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ABSTIRACT

The problem of Adaptive Time Series Analysis and System

Identification is a very difficult one,particularly in an

environment where the systam characteristics are changing

with time or the system is in a closed-loop configuration,

such as the problem of Adaptive Flutter Suppression and

Control of Large Space Structures. The main objective of

this project was to investigate the theoretical issues

related to a relatively new system identification technique,

known as Canonical Variate Analysis (CVA), that has been

successfully used in such environments. In this technique,

a Markov Model is extracted from an observed data set on the

basis of stochastic realization theory and statistical

correlation analysis. The optimal model order is

automatically selected using an information theoretic

criterion known as Akaike Information Criteria (AIC). The

overall technique is known as CVA-AIC System Identification

Technique.

The CVA-AIC technique has been in use for some time

primarily as an ad-hoc scheme. Although the underlying

theories such as the Stochastic Realization Theory and

Canonical Correlation Analysis are rigorously established,

various aspect of CVA-AIC technique itself have not been

based on rigorous theoretical justifications. For this

reason, the overall effort of this project was devoted



towards theoretical understanding and relationship to other

identification techniques. In particular, the relationship

of the CVA-AIC Technique to Maximum Likelihood

Identification using the E-M algorithmic approach has been

investigated. It has been shown how Maximum Likelihood

Estimates can be obtained starting from the CVA-AIC

solution. The E-M Algorithmic approach also suggests real-

time recursive'algorithms.

The report starts with a clear and theoretically

elegant interpretation of AIC in a discrete valued random

variable framework. The relationship between the state-

space model obtained by the CVA-AIC technique and the

standard Kalman Filter form has been explored. In many

situations, models of all orders are needed and, therefore,

a simple algorithm that is recursive in the model order has

been developed without matrix inversion at each step. The

control engineers often rely on the confidence bands around

the power spectral density function of noise and transfer

function of the system. It has been shown how to compute

this band at various confidence levels around the true

spectral density and transfer function. A major emphasis has

been placed upon time varying dynamic systems with slowly

varying and abrupt changes. It has been shown that by

selecting moving windows, the slowly time varying parameters

in the system can be tracked and, by appropriately

partitioning the data, the computed AIC from each partition



can be used to detect abrupt changes. Simulated exa-ples

have been provided in support of this result. It is further

shown how the E-M Algorithmic approach can used to identify

time-varying parameters.



CHAPTER 1

1. INTRODUCTION

1.1 Overview of the Adaptive Time Series Analysis Problem

Adaptation in time series is an important problem in a number of DOD

systems and has many applications in various commercial industries. This

is an especially difficult problem in problems requiring realtime adap-

tation to process changes since such a procedure would have to be comple-

tely automatic and reliable. Adaptation is necessary in systems where the

dynamical characteristics change with time in unpredictable ways, or where

the noise disturbance process characteristics vary with time. Examples of

systems that require adaptive time series analysis are the adaptive

suppression of aircraft wing flutter, identification of the dynamics of

large flexible space structures, detection of failures in aircraft from

subsystem failures of battle damage, identification of missile aerodyna-

mics, target tracking, and various signal processing problems.

The solution to the adaptive time series analysis requires several

advances in current time series methods. At the core of the problem is the

need for a fundamental statistical approach to the adaptation problem that

poses the problem in a meaningful way and that leads to computable solu-

tions. To solve the online adaptation problem, a reliable and automatic

time series modeling procedure is required that is lacking in previous

methods. The current research provides

* A sound statistical basis for posing and solving the adaptation

problem
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* A numerically and statistically reliable online computational

procedure

This approach has been used in conjunction with a new high resolution

system identification method utilizing canonical variate analysis (CVA) for

the determination of the dynamics of high order multisensor systems with a

small data length (Larimore, 1983b). This algorithm can be implemented on

highly parallel processors such as a systolic array. This makes practical

the consideration of many different system characteristics to determine the

best for modeling the observed sensor data and correlational relationships

between the many sensors. The system characteristics that have been suc-

cessfully determined adaptively are the dynamical state order of the

system, the presence of correlated disturbances, the optimal data length to

use in tracking a time varying system, and the optimal data interval for

detection of an abrupt change or other event in the data.

The OVA time series analysis method has been applied to the design of

an adaptive flutter suppression problem for suppressing wing flutter or

aero-structural vibration in aircraft. While considerable progress has

been made in the problem of adaptation in terms of identification of time

series models, adaptive time series methods which can efficiently track and

detect time varying processes would further improve the system. In such a

system the wing dynamical characteristics can change instantaneously when a

wing store is dropped, and the new wing dynamics are unknown and may be

unstable resulting in a growing oscillation. If the unstable mode is not

detected, accurately identified, and stabilized by control feedback in less

1-2



than a second, then the aircraft can lose a wing. The CVA algorithm using

entropy methods for deciding model state order are being implemented on a

vector array processor which will identify high order systems with dozens

of dynamical states and multiple inputs and outputs in fractions of a

second. This system has been tested in real-time simulations, and was suc-

cessfully demonstrated in wind tunnel tests at the NASA Langley Transonic

Dynamics Wind Tunnel. It is expected that highly parallel processors such

as systolic array processors could result in a speedup of many thousands of

times which would be required for some very large scale real time adaptive

problems.

1.2 Signal and Fault Detection

A Comprehensive survey of fault detection methods is given by Willsky

(1976). See also Mehra and Peschon (1971), Willsky and Jones (1974),

Willsky (1980), and Isermann (1984). The type of abrupt changes in a

system that are considered are of the form

x(t+l) = Dx(t) + Gu(t) + w(t) + m(t) (1.1)

y(t) = Hx(t) + Au(t) + Bw(t) + v(t) + N(t) (1.2)

where u is the input vector process, y is the output vector, x is the state

vector, and w and v are white noise processes that are independent with

covariance matrices Q and R respectively. These white noise processes

model the covariance structure of the error in predicting y from u. The

abrupt changes are in the form of the time the functions m(t) and n(t)

introduced into the state and observation equations. Fault detection is

thus the detection of the presence of such nonzero functions.

1-3



For various hypothesized forms of the functions, i.e., for jumps in

various components or specific combinations of the components, a particular

detection computation is devised which requires implementation of a Kalman

filter. This leads to statistically most powerful likelihood ratio tests

of the various failure hypotheses. An optimal solution to the failure

detection problem formulated in (1.]) and (1.2) is thus obtained.

There are however several more general failure detection problems not

of the form of (1.1) and (1.2). The approach permits only the consideration of

simple hypotheses, i.e., where the failure functions m(t) and n(t) are of

the form of an unknown scalar amplitude parameter multiplying a function of

known form. More general functional forms such as two components with dif-

ferent unknown amplitude parameters multiplying the known functions

requires maximum likelihood parameter identification at considerable com-

putational expense and loss of numerical reliability. Furthermore, the

problem of unknown failure time leads to a considerable increase in the

required computation, and no theoretically sound decision procedure has

been proposed for choosing the failure time.

The general case of changes in the system dynamics or correlational

characteristics of the disturbance or measurement noise processes cannot be

handled. Such cases require general time series analysis parameter iden-

tification methods which are not reliable for online application to high

state order multivariable systems as discussed in Section Multisensor

System Identification. Isermann (1984) gives a survey of current fault

detection methods and concludes that: "A unique calculation of the process

1-4



coefficients and a parameter estimation with high precision is only

possible for low order elements between measured variables. Therefore the

measured variables should be selected such that the process is divided in

first order elements or, in other words, all state variables should be

measurable. Easy to implement parameter estimation methods for continuous-

time modles to be used on-line, real-time and in closed loop need to be

developed." The requirement of measuring all of the states is not

realistic in most situations especially in general multivariate time series

and system identification problems. Fortunately, the CVA system iden-

tification method does not require this, but indeed is an online, real-time

method that gives the same accuracy in either open or closed loop.

The issues of adaptation are not addressed in the fault detection

literaure except in simplistic ways. The present state of the art in adap-

tation for failure detection appears to be the work of Hagglund (1983)

discussed in the next section, and is just beginning of adaptive approaches

which consider fundamental issues in adaptation.

1.3 Adaptation to Changing Processes

Concepts of adaptive systems have been around since the 1950's

involving various senses of adaptation. The present literature on the sub-

ject includes a number of methods such as recursive computational schemes,

exponential forgetting, lattice computational methods, etc., which have

certain "knobs" that allow tuning of the algorithm to accommodate changes

in the characteristics of the actual processes. Reviews of these and

related methods are contained in several recent special issues of technical
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journals and books (Special Issue on Adaptive Control, Automatica, Vol. 20,

No. 5, 1985; Special Issue on Linear Adaptive Filtering, IEEE Trans. on

Information Theory, Vol. 30, No 2, 1984; Honing and Messerschmitt, 1984).

While these methods do permit some degree of adaptation to process changes,

the methods of adaptation are ad hoc, and no sound underlying statistical

principle for adaptation is proposed or demonstrated. As might be

expected, these methods can work poorly on certain cases because of the

lack of a sound statistical basis.

In particular, the recursive prediction error and lattice methods are

convenient due to their recursive form and provide an estimate at every

observation (Friedlander, 1982a, 1982b, 1983; Ljung and Soderstrom, 1983).

Also, the recursive algorithms can be sued for adaptation by exponential

weighting of the past data (Wellstead and Sanoff, 1981; Irving, 1979; Evans

and Betz, 1982). But the rational for exponential weighting has not been

given a sound fundamental justification, but is used largely due to its

ease of use. the choice of the exponential weight has been ad hoc and

susceptible to misinterpretation of changing noise variance levels as time

varying changes in the dynamics (Hagglund, 1983).

The fundamental problem in adaptive time series analysis is adaptation

to time varying processes. The essential problem is the determination of

the characteristics describing the rate at which the process is changing.

This problem has received very little in-depth treatment in the literature.

Most of the difficulty can be attributed to the discrepancy between the

true and assumed uncertainty in the measurements. Adaptive control schemes
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are notoriously optimistic about the quality of the parameter estimates

because the time varying nature of the process is ignored.

A notable exception is the recent work of Hagglund (1983) which takes

an information handling point-of-view. This approach leads to a more

realistic appraisal of the accuracy of the parameter estimates and con-

sequently the value of new measurements which become available in time.

Two classes of time varying systems are considered:

* Processes with abrupt changes

* Processes with slowly varying changes.

Within each of these classes, changes are considered in the process dyna-

mics and/or noise variance.

For abrupt changes, the fault detection approach is taken. The central

idea is to monitor differential changes in the parameter estimates to

detect abrupt changes. A new procedure is derived by Hagglund which

requires no apriori information and is very sensitive to jumps in the para-

meters. This procedure is shown to have very good properties in both

theory and practice. This works well for parameters of the dynamics as

well as those of the noise variances in the simple cases of low order

systems.

The problem of slowly varying parameters has plagued many adaptive

control schemes. Although the concept of discounting the old data using a

forgetting factor has been in use for a long time, the problem of how to
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relate this factor to the data has been elusive. The principal proposed by

Hagglund is to discount past data in such a way that a constant amount of

information would be retained if the parameters were constant. The quan-

titative measure of the information used is the inverse of the parameter

estimation error covariance matrix which is the Fisher information matrix.

Theory and simulations show that this works quite well in low order and

well conditioned systems. However for high order and multisensor systems

with illconditioned parametric structure, the algorithms are not so well

behaved.

1.4 Multisensor System Identification

System parameter identification from observed measurements is a crucial

part of the adaptive multivariate timeseries analysis problem. It is

necessary to adapt anot only to changes in the input to output charac-

teristics of a system, but the correlational characteristics of the distur-

bance and noise processes must simultaneously be determined. The

feasibility of adaptive methods requires first that a reliable online

multivariate time series identification procedure be available.

There are several difficulties with currently available methods and

software for the identification of system dynamics and noise charac-

teristics. Current methods include the self tuning regulator (STR) (Ljung,

1983; Astrom, 1973; Astrom et al, 1973, 1977), maximum likelihood estima-

tion (MLE) (Mehra and Tyler, 1973; Larimore, 1981a), Box-Jenkins (BJ)

methods (Box and Jenkins, 1976), and a variety of heuristic approaches.

The current state of the art in both MLE and BJ require that an analyst be
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involved in the procedure, and the required number of computational itera-

tions is not bounded. The STR has been applied successfully to simple pro-

cesses, but is not completely reliable for general processes particularly

when multi-input, multi-ouput systems are involved. In additicn, the

recursive prediction error algorithm used in the STR requires a good ini-

tial estimate and so is not suitable for short data where no apriori data

is available. The heuristic approaches tend to be special purposes and are

rather unreliable in general applications.

Of the current approaches to multivariate time series identification

which are high resolution, i.e., make efficient use of the observational

information, most use the ARMA (autoregressive moving average) represen-

tation for the process. For multi-input multi-output systems this is not a

globally well defined parameterization which is a major cause of the dif-

ficulties in the present identification methods (Gevers and Wertz, 1982). A

consequence is that there is no single parameterization which is numeri-

cally well conditioned, and known algorithms can be made to fail for a par-

ticular choice of system. The system identification problem is well

defined in that the class of models does have best models in a maximum

likelihood sense (Larimore, 1981a), but the ARMA parameterization is not

unique so that for cases such as pole-zero cancellation there is a whole

equivalence class of models with equivalent characteristics. In the sequel

this difficulty in parameterization will be resolved by the use of state

space models, and stable numerical methods will be described for statisti-

cally reliable online identification of multivariable time series.
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1.5 Adaptive Time Series Analysis Using Predictive Inference and Entropy

Recently a very general predictive inference approach to statistical

modeling has led to a fundamental statistical inference justication of

negative entropy as the natural measure of model approximation error

(Larimore, 1983a). This development has a number of very attractive

features:

* It applies to completely general modeling problems including

nonparametric methods.

* It applies exactly to small samples.

* Only the fundamental statistical principlaes of sufficiency and

repeated sampling are used.

* It applies to time correlated problems such as time series model

identification and tracking.

* Statistical inference can be fundamentally viewed as model

approximation.

Early developments in predictive distributions are very old, although

modern approaches apparently begin with Jeffreys (1961, p.14 3) who used a

Bayesian approach, as has much of the work following (Atchison and

Dunsmore, 1975, preface and p. 39). The approach taken here has been sti-

mulated by Murray (1977, 1979), the work of Akaike (1973) and model struc-

ture determination problems (Larimore, 1977a).
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1.6 Initial Results Indicating Feasibility

SSI has been in the forefront in developing the CVA and entropy

metnods. Here the related projects are discussed along with preliminary

results indicating the feasibility of the proposed methods.

The original stochastic realization method of Akaike's (1975) was

further developed into a commercial software package for mainframe and mini

computers by Mehra (1978) and Mehra and Cameron (1976, 1980). Further

generalizations to input output systems along with refinements in com-

putational speed and accuracy were developed by larimore (1983b) and

Goodrich and Larimore (1983) leading to the current timeseries analysis and

forecasting package, Forecast Master (Trademark of SSI), for the IBM/PC.

This package is in widespread use in utilities, banks companies and

universities.

This algorithm has been the basis for several studies in online systems

identification. The project "Basic Research in Adaptive Model Algorithmic

Control" used the online CVA system identification algorithm. In the

current study "Reconfiguration Control Strategies", the CVA method along

with adaptive tracking and detection methods are being studied. The pre-

sent theory on adaptation using entropy methods (Larimore, 1985a) was deve-

loped under the basic research study "traget Dynamic Modeling" and under

the study "Development of Statistical Methods Using Predictive Inference

and Entropy" which was Phase I of this proposed Phase II study.

A review of the technology in system identification and adaptive

control for adaptive methods applicable to the suppression of aeroelastic
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wing vibration (flutter) was done in Larimore and Mehra (1984). This study

describes the deficiencies of current methods and suggets the feasibility

of CVA and entropy methods for fully adaptive online detection and tracking

of wing flutter. In a current study with General Dynamics sponsored by the

Air Force Wright Aeronautical Laboratories, CVA has been analyzed exten-

sively in computer simulations, real time tests, and demonstrated wind tun-

nel teste for adaptive flutter suppression. The ability of CVA to identify

very complex flutter dynamics of high state order involving very closely

spaced spectral peaks in the presence of correlated wind gust disturbances

using short data lenghts demonstrated the consderable statistical accuracy

of the method. The online CVA identification algorithm was demonstrated

ina wind tunnel test at the NASA Langley Transonic Dynamics Wind Tunnel on

a 1/4 scale model of an F-16 aircraft.

1.7 Synopsis of Report

In Section 2, we present a detailed and transparent derivation of an

unbiased entropy measure which will be used in the sequel for adaptive

estimation. This measure is asymptotically equal to Akaike's AIC cri-

terion. In Section 3, we present a detailed description and derivation of

linear least-squares prediction using canonical variates analysis (CVA).

Several new forms for these predictors are given. In Section 4, a method

for direct determination of the parameters of the Kalman filter in canoni-

cal form is given, and is shown to be equivalent to a truncated optimal

linear predictor derived using CVA. Section 5 considers the model order

selection problem, using an entropy-based approach. The problem of abrupt

1-12



change detection using entropy methods is considered in Section 6 and a

specific algorithm is derived and tested. In Section 7 we consider the

problem of slow change detection, specifically the problem of finding the

optimal data length for model fitting when the time series coefficients are

slowly varying. An entropy-based algorithm is developed and tested.

1-13



C APTFR 2

2. PREDICTIVE INFERENCE AND ENTROPY

2.1 Introduction

In this section we develop the necessary background for development of

adaptive estimation algorithms in the sequel.

The problem under consideration is that of predicting the future evolu-

tion of a time series, given some observations of the past. The predictive

inference framework may be described as follows.

We assume that the density function of interest is parametrized by a

parameter vector 0 E Rm and is denoted by p(xf 0). For the purposes of

discrimination between two alternatives 0 1 and 00 it can be shown (Akaike,

1973) that all necessary information is contained in the likelihood ratio

Lx) p(X 01) (2.1)

Thus, the mean amount of information for discrimination when p(xj 00)

is the true density is of the form

I(0l, 00) = f P(x 0) * [( 0)x e)) dx (2.2)

where 0(.) is a properly chosen function. It can be argued using infor-

mation theoretic arguments (Akaike, 1973) that the only appropriate form is

0(y) = log y (2.3)

which leads directly to the measure
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B(01 , 0) = f p(x 1 00) log p(x)O dx (2.4)

Note that - B(01 , 00) is the Kullback-Liebler information for discrimi-

nation in favor of 0 ". It can be easily shown that B(01 , 0) 4 0 and

equality holds if and only if p(x i 01) = P(X1 0) almost everywhere

(Aitchison and Dunsmore, 1975).

Note that B(O1 , 00) can be written as

B(01 , 00) = f p(xJ 00) log p(x 01) dx

- f p(x, 00) log p(xJ 00) dx (2.5)

Since O0 represents the true (unknown) parameter, our objective is to find

the parameter estimate 0 which maximize B(O, 00). From (2.5), we need

only maximize

f p(x 0O) log p(x 0) dx

with respect to 0 to produce our estimate. This estimate maximizes the

expected log-likelihood and is thus a maximum - likelihood estimate.

2.2 Preliminaries

In order to present a clear development, we will work in a partitioned

sample space. The random variable x is presumed to be in n - dimensional

Euclidean space, x C Rn, and Rn is partitioned into s mutually disjoint

regions Q1, Q2, Q s which cover Rn:
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S1 U n2 U. . . U S = Rn

j n Qj = 0 ; i~j

We then define

pj(G) f p(x 1 ) dx (2.6)
Qi

i = 1, 2, . . . , s

We consider two different samples, an informative sample q and a pre-

dictive sample r. The informative sample is

Xq = {Xqi, Xq2 . . , Xqnq}

which consists of nq observations of x. The predictive sample is

Xr = {Xrl, Xr2, * . . Xrnr}

consists of nr observations of x. We assume that nqi of the informative

samples fall into Qi and that nri of the predictive sample fall into Qi.

Then

s

nqi = nq

(2.7)
s

nri = nr
i= 1

The two samples xq and xr are from the true distribution.

Thus we have, approximately, for sufficiently large samples,
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Pqj(Q) -- nqi (2.8)

nq

and

Pri(0) ri 
(2.9)

and we assume regularity conditions throughout such that

pq(xj 0) = lim Pqi(O0)
nq + (
S + cc

where

lira Qi = x

x i

and similarly for Pr(xj 00 ). The computation of the probabilities asso-

ciated with the parametrized densities is different. Here we use the defi-

nition (2.6) and note that pi(O) is computable from p(xj 0) and knowledge

of Qi. In practice, this computation need not be done, as become clear in

the sequel.

2.3 Entropy and Maximum Likelihood Estimation

The first step in our development is to form the maximum-likelihood

estimate. This is done by maximuzing (2.5) on the informative

sample:

e = arg max Bq(e, 00)

where
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s V Pqi(G) 1
Bq(E, 00)= pqi() log I (2. 1C)q PqPqi(EO)

Thus

s 3 lo Pqi(( ))Pqi() lo i = 0 (2.11)

i=l

0

We note here that an approximation for Bq(Gl. 00) is

q P(xi IG)
Bq(O, 00) log P(xil 00) (2.12)

i=l

and the two expressions are asymptotically equal as nq + . This form was

used by Akaike (1973) to derive the AIC criterion.

Solving (2.12) would, in principal, give the maximum-likelihood esti-

mate if the dimension of 0 were known. However, in practice, the actual

dimension, m, of e is not known. Furthermore, there is an obvious tradeoff

between the cimension of our estimate 0 and predictio: error. Assume

O e Rk. Then as we increase k, the fit error on the informative sample

will decrease momotonically. However, at some point we are in danger of

overfitting the model so that e is a function of the sampling error on the

informative sample. When this happens, the fit errors on the predictive

sample will begin to increase.

If we assume that the true parameter vector dimension is m and that the

estimated parameter dimension is k < m, then our objective is to evaluate

the information measure on the predictive sample and select the model which

2-5



maximizes this measure. The discrimination measure is now separated into

two parts in order to simplify the analysis:

Br(G, 0 ) = Pri(GO)log r(m ~i= 1Pi(0

s Pri( 6) s Pri(O0)
= Pri( 0 0)log -k) Pri(0)log ri(0k)i~lPri (O k  ~ Pri ( k

= Br(6k, Gk) - Br(O0, Gk) (2.13)

where 0k C Rk. Both entropy measures are measured with respect to the den-

Sity Pri(Ok) and Ok is arbitrary. We will in the sequel pick Ok in a par-

ticular manner which clarifies and simplifies the development. The

decomposition of (2.13) is done to clarify the exposition and to make clear

the crucial role played by the number of parameters k. The summations in

(2.13) are taken with respect to the true density on the predictive sample

while Ok is the estimate computed on the informative sample. Thus,

Br(&k, 0) is a measure of the information between the estimated den-

sity and the true density on the predictive sample. Since the informative

sample is known but the predictive sample is not we will use statistical

mean values in the sequel.

In order to evaluate Br(6k, 0k) and Br(O0, 0k) we will expand around

the actual probabilities on the informative sample.

Evaluation of Br(6k, ek)
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I
From (2.13):

s
Br( Gk, Gk ) = Pri(G0) [log Pri(Gk) - log Pri(ek)] (2.14)

i= 1

Define the sampling error between the informative and predictive proba-

bilities as

ei(G) = Pri(G) - Pqi(G) (2.15)

Expanding the log term to second order yields

alog Pqi(-
k )

log Pri(Ok) = log Pqi(ek) + elPqi (k)3Pqi e(k

1 32lOgPqi(Ok) alogPqi(9k)
2 ei2(9k) + (Ok - 0k)

Pqi k

+1_ (6k - ek)T 2 1OgPqi(ek) (6k - ek) + (6k - ek)T a 2logPqi(ek) ei(9)

2 aok2 aek aPqi

(2.16)

Thus

s 3109 Pqi(G 
k )  k

Br(6k, ek) = Pri(90) 3 0 P k ) k - ek)

+ s Pri(e0) (Ok - Gk)T a2 1og Pqi(ek) (6k - ek)
Ii ( ;ek2

+ Pri(O0) ( k - ) a21°g Pqi(ek) i(k )  (2.17)

i=l O ' 8 apqi e(k

This expression can be further simplified by utilizing the fact that,

since 0k is a maximum-likelihood estimate on the informative sample:

2-7



i s alog Pqi(P k)

* Pqi(o g) =0 (2.18)

Expanding this around 0k yields

qs j ) alog Pqi(Ek) a 2 1og Pqi((k) k _ =

i (l aek + aEk2 (Ok ) 0(2.19)

Using (2.15) and (2.19) and in (2.17) yields

Br k, k) log p s(k) ( k

+ ei(O 0 k)(ok kSi=l a0k

I s l 21og Pqi(k )

T Pqi(GO) (Ok - Gk)T (Ok k)
s~ aek22lo qOk

+ [Pqi(O0) + ei(OO)] (;k - Gk)T aEk ap ej(O) (2.20)i~l ek aq i

where we have assumed ei(Ok) ei(0).

The error ej(O0 ) is the difference of two probabilities, which are

binomially distributed, by construction:

ej(O0 ) - Pri( 0O) - Pqi(0 0)
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s

Fur:herzore a e( O) = D, by dein ition.

Since we are assuming here that Pri(%0) and pai(3O) are independent samples

from the same underlying distribution, ei(2 0 ) is unbiased:

E ei(00), = 0 (2.21)

where E { I denotes expectation with respect to all underlying random

variables. Recalling that the informative sample is of size nq and the

predictive sample is of size nr, Pqi(e0) has approximate variance

1

and Pri(O0) has variance

var (Pri( 0 )) = - pi( 0 ) [1 - pi(e0 )(n.

Thus

var (el(e0O)) ipi(O0 ) [1 - pi(G0)] (2.22)

n

where n - nqnr / (nq+nr). The expected value of Br(Gk, Gk) can now be

written in simplified form by using

321og Pqi(Ok) 1 alog pi(ek)

aek aPqi Pi(00) aek
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s

Furthermore ei(O 0 ) = 0, by definition.

Since we are assuming here that Pri( 0 ) and Pqi(eo) are independent samples

from the same underlying distribution, ei(00) is unbiased:

E {ei(GO)} = 0 (2.21)

where E { } denotes expectation with respect to all underlying random

variables. Recalling that the informative sample is of size nq and the

predictive sample is of size nr, Pqi(O0) has approximate variance

1

var (Pqi(eo)) = - Pi(O0) [1 - pi(eo)]

and Pri(eO) has variance

1

var (Pri(9 0)) =-r pi(o0) [1 - pi(O0)I

Thus

var (ei(8 0)) = - pi( 0O) [I - pi(eo)] (2.22)
n

where n - nqnr / (nq+nr). The expected value of Br(Gk, ek) can now be

written in simplified form by using

a21og Pqi(Ok) 1 alog pi(Gk)

aek aPqi pi(GO) aek
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The result is that the expected value of Br(6k, ek) is

E {Br( 6k, e)}

1 s~ a2 log P( k)

2 E pi(GO) ((k _ e-k)T e2 E)k - ek)

i E (6k - Ek)T ask (2.23)

In the sequel we will choose ek 
= 

0*k so that G*k is a minimum-variance

estimate of 00. This results in the second term being much smaller than

the first term for reasonably large values of X/s. We will explicitly

neglect this term in the sequel.

Evaluation of Br(OO, O*k)

From (2.23)

Br(GO, ek)

- a 2 log pi()
pi(9)O pikT p2 (e0 - Ok) (2.24)

1( 0 - ek)T I(GO) (00 - 0k) (2.25)

where 1(e0 ) is the information matrix
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s 21log pi(O0)

1(00 ) = i 2p(0 (2.26)-. i(G 3pi

In (2.23) both Gk and 6k are k-dimensional parameter vectors. Here,

however, G0 is an m-dimensional vector (m > k). To handle this situation,

we write E0 - Ok E Rm as

- Ook - ()k

E0O - ()k= L L 0

where O0 k C Rk, e 0 e Rm-k

setting

j(Ok) = (00 - Gk)T 1(E0 ) G0 - Gk)

and minimizing with respect to 9k yields

e*k . eok - 111- 1 (00) 112 (e) e0 (2.27)

where we have partitioned I(G0) as

S 11(00) 112(90 ) 1
112(o) 122(00)

The minimum value of J is
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jJk 50 I 9 I IT I 110 i-I
J(0*k) - 1 2 0T [122(00) - 1 12(00)T III(00)

- 112(00)] 60

If we partition the covariance matrix

P(0o) = I(o)-1

L P e(0 0 ) P1 2 (0 0 )

P1 2 (100) P22(00)1

then

J(o*k) - 1 oT P2 2(00)
-  0

where P22(00)- I = 122 - 1 12T Ii
- 1 112

Since

S
p(Go) = p ei(g) (g0 - O*k) (00 - e*k)T

i=l1

- E [(0 - e*k) (e0 - e*k)T]

we get, finally,

E [J(0*k)] - Cm - k)

or

[Br(90, G*k)] (k-m) (2.28)
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2.4 Unbiased Estimate of Entropy

From (2.23)

E{Br(6k , Ok)} ( k - qk)T I(ek) (6k - ek)

where I(Gk) is the kxk information matrix

s ~~a egi(
1((k) = E Pi(0) agk)

and pi( 0 ) is given in (2.6). Using (1.5) and (1.6) we see that

E Br(6k, Ok) = -4- tr Ik

=-k (2.29)

where Ik is the kxk identity matrix.

Combining (2.29) and (2.28) yields

E{Br(ek, ")} T . - k (2.30)

where ek is the maximum likelihood estimate (ek £ Rk). This represents a

bias in the maximized log-likelihood function, with the result that our

goal is to pick k such that
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s

Pqi (GO) log Pqi (0k) + E - k
2

is maximized. By reference to (2.10) and (2.12), this is equivalant asymp-

totically to picking k such that

n
q

log P(xil k)+ g-k
i=1

is maximized. Since m is a constant here, the equivalent goal is to mini-

mize

n

AIC(k) =- 2 log p(xij k) + 2 k (2.31)
i=1

with respect to k, which is Akaike's AIC criterion.
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CHAPTER 3

3. CANONICAL VARIATES ANALYSIS

We now consider the linear prediction problem using the canonical

variates analysis approach.

Let the past be represented as a column vector P(t) defined by

Y(t)

P(t) = y(t-1)

* nxl

and define the future as a column vector

y(t+l)
F(t) =

y(t+2)

• m~ n

m mxl

where y(t) is the r-dimensional observed output at time t. Our goal is to

predict the future F(t) given P(t).

We now consider the canonical variate analysis in a form that allows us

to explicitly show the optimality properties of the method.

Consider nonsingular transformations of the past and future

c(t) - J P(t) (3.1)
nxl nxn nxl

d(t) - L F(t) (3.2)
Mxl mxm mxl
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and form a K -h order estimate of F(t)

k
Fk(t) = ai ci(t) (3.3)

i= 1

where {ail are mxl vectors and ci is the i-h component of c (a scalar).

Since ai is fixed, only ci(t) depends on the data. Since J is only

constrained to be nonsingular, we can use a very general form for it.

Without loss of generality we can specify that

E [c(t) c(t)T] = Inxn (3.4)

Let B be an orthonormal matrix:

T
Bnxn Bnxn = Inxn (3.5)

Then

j Spp jT = BT B (3.6)

where Spp = E [P(t) P(t)T ]

This has a solution

T -1/2
J = B TSp (3.7)

Now

T
ci = Ji P(t) (3.8)

T
where Ji is the i h row of J;

3-2



i
T T -1/2

Ji bi Spp (3.9)

and

B = (bI b2 . . . bn] (3.10)
nxn

Thus

T -1/2
ci = bi Spp P(t) (3.11)

and the estimate Pk(t) is

I-~~ ]~r -1/2
Fk(t) L a i  bi  Spp P(t) (3.12)

A Qk P(t)

where

k T
Qk = ai  bi  (3.13)

i= 1

Note that Qk has maximum rank k.

The prediction error is

ek(t) / Qk Spp P(t) - F(t) (3.14)

We now form a quadratic cost function
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T -1
Lk = E [ek(t) W ek(t)]

-I -1/2 T -1/2 T T
= tr W E {[Qk Spp P(t) - F(t)] [P(t) Spp Qk - F(t)]}

-1 T
= tr(W Qk Qk)

-1 -1/2 -I
- 2tr(W Qk Spp Spf) + tr(W Sff) (3.15)

where Spf = E [P(t) F(t)T], Sff = E [F(t) F(t)T ]

In order to handle the orthonormality constraints we add the constraint

equations via Lagrange multipliers to form the augmented cost

k T
Lk = Lk + Xi (bi bi -1) (3.16)

i=1

where {Pi} are Lagrange multipliers. Thus

L -  k T n T
Lk=tr{W I ai bi X bj aj}

i=1 j=1

-1 k T -1/2
-2tr{W I ai bi Spp Spf}

i=1

+ tr {W- I Sff}

k T
+ I Xi (bj bj -1) (3.17)

i=l

T
Using bi  bj = 6ij, with 6 the Kroneker delta function, (3.18)

and rearranging gives
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- k T -1
Lk ! ai W aI= ai

k T -1/2 -1
2 i bi  Spp Spf W ai
i= L

-I k T
+ tr(W Sff) + A Ai(b i  bi -1) (3.19)

i=l1

Taking partial derivatives:

Lk T -1 T -1/2 -1

aai 2 ai W - 2 bi Spp Spf W (3.20)

3Lk T -1 T -1/2 T

bi = -2 ai W Spf Spp + 2 Xi bi (3.21)

Thus, the first order necessary conditions for minimizing Lk are

* T -1/2 *
ai = Spf Spp bi  (3.22)

* -1/2 -1 *
Xi bi = Spp Spf W ai  (3.23)

for i = 1, 2, ... , k.

Eliminating ai:

* -1/2 -1 T -1/2 *
ii bi = Spp Spf W Spf Spp bi (3.24)

which is an eigenequation.
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The first term of (3.19) becomes

k *T -1 *
ai  ai

i=1

k *T -1/2 -1 T -1/2 *
= bi  Spp Spf W Spf Spp bii i=1

k
= i (3.25)

i=l1

The second term of (3.19) becomes

k *T -1/2 -1 T -1/2 *
-2 bi Spp Spf W Spf Spp bi~i-I

k
-2 Xi  (3.26)

i=l1

Thus, the optimized cost is

• -1 k
Lk = tr(W Sff) - I i (3.27)

i=1

Now let

S-1/2 -1/2

R = Spp Spf W (nxm) n>m (3.28)

From (3.24),

•T T *
bi  R R bi = A i  (3.29)

By using a singular value decomposition on R:
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T
R = U D V (3.30)

T T
V V = I, U U 1 I (3.31)

-i 0 -

D = r (3.32)
0 Ym

- 0

where yi > Y2 > o •m

T T T T
Then R R = U D V V D U

T T
= U D D U (3.33)

Then, from (3.29)

*T T T *
bi  U D D U bi = X i  (3.34)

Thus bi* is the eigenvector of U D DT UT whose eigenvalue is Xi.

Now let

U = (Ul U2  o Unj (3.35)

where the Ui are mutually orthogonal unit vectors by construction. But the

matrix U D DT UT has eigenvectors Ui and associated eigenvectors Yi
2 since

uiT U D DT UT Uj fi 2 Sij (3.36)

Thus
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Yi2 -Xi, Ui = *i (3.37)

and

* T -1/2
aj = S pf Spp Ui (3.38)

By using (3.37) in (3.27) we get

*1 k 2
Lk = tr(W Sff) - Yi(3.39)

and we see that the cost is minimized by using the k largest canonical

variances, Y12 > Y2 2 > Y3 2 > **> Yk 2.

We can now write the optimal forecast as

*k * *

Fk(t) = ai ci(t)

k T -1/2 T -1/2
= Spf Spp Ui Ui SPP P(t)

T -1/2 k T -1/2
= Spf Sp Uj Ui) Spp P(t) (3.40)

Thus, if we denote the optimal weighting matrix by Ak:

Fk(t) =Ak P(t) (3.41)

* T -1/2 Tk -1/2
Ak =Spf Spp L Uj Ui S pp (3.42)

Note that
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An = Spf Spp -  (3.43)

To determine L (cf (3.2)), we can use the condition

E (cdT) f D (3.44)

or

J*Spf LT D (3.45)

From (3.7),

Lrf D(3.46)
1i/2

UT  S pp Spf LT D( . 6

But

D = UT R V

-1/2 -1/2
= UT Sp1 Spf W V (3.47)

Comparing (3.46) and (3.47) gives

~-1/2

LT =W V , or

L = VT W (3.48)

!*
Note that Ak, the optimal gain matrix is of dimension mxn but has a maximum

rank of k.

Note that k 4 m since the symmetric matrix in the eigenequation

(3.24) has rank 4 m. This is very important, as it implies that we need to

make the dimension of the future vector (m) at least as large as the maxi-

mum expected order of the estimator.
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An efficient computation of Ak is

* -1/2 -1/2

di= S pp Uj ; S p symmetric

T*

aj = Spf di

* k T
Ak = aidi

Cholesky Form

The cholesky factorization of a positive-definite matrix is an attrac-

tive way of computing a square root matrix. Let

Spp = QQT

Then we get the following relations

* T
ai = SpfQUi

*T -1 T
XiUi =Q Spf W Spf QUi

R =Q Spf W

*T k T T
Fk(t) =Spf Q C Ui Ui) Q P(t)

* T k T T
Ak = Spf Q C Uj Uj) Q
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Trucated Predictor

In the sequel, we will be restricting the total number of parameters

allowed in the predictor. The question arises as how to best truncate the

prediction equations. Our approach is to use only the most recent past

values. For example, suppose we have used m = 5 in our analysis, but wish

only to use a one-step-ahead predictor with k parameters. Then our predic-

,

tor uses only the first k elements of the first row of Ak.

Inclusion of Known Inputs

If we have an unknown system with measured outputs y(t) and measured

inputs u(t), the analysis of this section holds with only slight modifica-

tions. If we augment the past vector as

y(t)
P(t) = u(t) (3.49)

y(t-1)
u(t-I)

then all of the analyes of this section holds and the predicted values of

y(t) depend on both past values of y(t) and on past values u(t).
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CHAPTER 4

STATE SPACE MODELS USING CVA-AIC TECHNIQUE

We now consider the problem of determining the state-space matrices

directly from the linear prediction solution. Recall from Section 3:

y(t)

P(t) = y(t-1) (4.1)

nxl

i(t) = A P(t) (4.2)

If we restrict our problem to a one-step-ahead prediction of y(t), then

y(t+11 ) = A P(t) (4.3)

where A is mxn.

We can write a recursion for P(t) as follows:

P(t+1) - M P(t) + T y(t+l) (4.4)

where

0 0 . . . . . . 0

- 1 0 . . . . . . 0 (4.5)

0 I 0 ..... 0

0 .. . . .010

where all submatrices are wcm.
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l r=T It= i (4.6)
0(n-m)xm

so that P(t) is in recursive form with a driving term y(t+1).

The state-space formulation employs a Kalman filter for updating. The

equations for the time-invariant filter at steady state are

y(t+l1 t) = H x(t+1 t) (4.7)

;(t+1 I t) = t ,(t t) (4.8)

x(t+1 I t+I) = x(t+ll t) + K [y(t+1) -y(t+l t)] (4.9)

Combining (4.7) - (4.9) yieldsIy(t+11 t) = H 0 x(t t) (4.10)

x(t+l I t+1) = (I-KH) 0 x(tj t) + K y(t+l) (4.11)

as the state-space equation set. The linear prediction set is

y(t+1 t) = A P(t) (4.12)

P(t+l) = M P(t) + T y(t+l) (4.13)

What we seek to do is match these two pairs of equations by finding the

state-space matrices H, 0, K which give the best "fit" to the linear pre-

diction equations.

Equations (4.7) - (4.9) can also be put in the form
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y(t+l tr) = H X(t+1 I t) (4.14)

x(t9-1 t ) = ' (I -Hxr.t-1.) + 0 K y(t) (4.15)

We can solve the problem operationally by using solutions involving delay

operators.

We will first solve the linear prediction equations. From (4.13),

P(t+I) = zM P(t+I) + T y(t+l) (4.16)

where z is the delay operator: z P(t+1) = P(t)

Solving (4.16):

-1

P(t+l) = (I-zM) T y(t+l) (4.17)

Thus, from (4.12):

Y(t1 t) = A (I-zM) T y(t) (4.18)

We can also solve the state-space equations in the same way.

From (4.10) and (4.11) we get

x(tj t) = [I - (I-KH) z] K y(t) (4.19)

so that

t) - [I - (I-K)K y() (4.20)

while from (4.14) and (4.15) we get
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x(=2 [I - 0(I-KH)zj K y(t+l) (4.21)

-1

y(t+1- t) = R [I - O(I-KH)zI 0 K y(t) (4.22)

If we could get a perfect match between the linear prediction and the

state-space predictors, then the following equation would be satisfied

-1 -1
A (I-Mz) T = H (I-(I-KH)$zl K (4.23)

or, equivalently

-1 -1
A (I-Mz) T = H[I-((I-KH)z] D K (4.24)

Using (4.23), we see that exact matching occurs, for dim (x) = n, if

SA = H 0 (4.25)

M = (I-KH) D (4.26)

T =K (4.27)

Equation (4.26) can be written as

M = $ - TA, (4.28)

so that

t = M + TA (4.29)

In addition, (4.25) gives

-1

H = A 1 (4.30)

Since H must satisfy A - H (M + TA), it is easily shown that H is in cano-

nical form
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H I [Ix m Ox(n-m)j

If is a valid transition matrix, it is guaranteed to be invertible. Thus

we only need to guarantee the invertibility of M + TA. Using the defini-

tion of M and partitioning T and A appropriately, we see

Dnxn 0 x(n-m) 0mxm 1
I (n-m)x(n-m) 0(n-m)xm

+ "° ImE Alxn- A2
0 (n-m)xm

rl A21(.)

The inverse is

-0 1
(D 1 -1 -1 (4.32)

= A2  -A2  A 1 4

Thus exists if A2- exists. To check this, write equatiotx (4.15) in

partitioned form as

(Aj A2 ]

pfl Spf2px Tl (4.33)L 2W12 W2J2

where
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LW1 1  W 1 2  S.34)

T ?
W 12 2L_

Then

A2  T T (.5

A2 = Spfl W12 + Spf2 W22 (4.35)

Now partition Spp as

S11 2
Spp= T (4.36)

S12 S22

Then

-1 T -1 -1
W2 = - S1 1  S12 (S22 - S12 S11 SI2) (4.37)

T -1 -1
W22 = (S22 - S12 S11 SI2) (4.38)

so that

T T -1 T -1 -1
A2 = (Spf2 - Spfl SI1  S12) (S22 - S12 Sii S12) (4.39)

Therefore

-1 T -1 T T -1 -1
A2  = (S22 - S12 S11 S12) (Spf2 - Spfl S 11 S12) (4.40)

Solving for A1 yields

T T T
Al - Spfl W11 + Spf2 Wi2  (4.41)

Using
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W-1 -1 T -- 1 -1 T -1

w11 = S1 + S1 1  S12 (S22 - S 1 2  S1l S12) S12 S11 (4.42)

r we get -

T -1Al = S pf I  SiI +

( T -1 T T -1 -1 T -1
[pfI S1 1  S12 - Spf2] (S2 2 - S12 S11 S12) S1 2  S11 (4.43)

In summary, we can use the direct solution if the matrix

T T -1
Sce = Spf2 - Spf I  SiI S12 (4.44)

is invertible.

This exact solution is restricted to the case dim (x) = n. This

implies that

dim(x(t)) = dim(P(t))

Truncated Filter

Given the matrices for the full-order Kalman filter Dnxn, Hmxn, Knxm,

the question arises as to whether there is a suitable truncation to a

lower-oder form required to meet restrictions on the total number of para-

meters. Using the forms of (4.27), (4.29) and (4.30) and assuming an order

k < n, and prediction of the first p future values (p < m), we truncate as

follows:

(1) 4kxk is the upper left kxk submatrix of 4nxn

(2) Hpxk is the upper left pxk submatrix of Hmxn

(3) Kkxp is the upper left kxp submatrix of Knxm

4-7



I Then the Kalman filter using tkxk' Hpxk, Kkxp yields exactly the same pre-

dictions as the truncated linear predictor of Section 3.
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CHAPTER 5

CONFIDENCE BAND AND ACHIEVABLE IN SPECTRAL ESTIMATION

5.1 Spectral Estimation Problem

The problem of determining the statistical accuracy in identifying a model for a

stationary multiple time series is considered in this chapter. The cases of the presence or

absence of an exogenous input or additive measurement noise are included. Consider the

general case where the vector x(t) is the exogenous input and the vector y(t) is the

observed endogenous output of a system which may include other unknown excitations and

measurement noise. Thus consider the jointly stationary gaussian vector time series x(t)

and y(t), t = ... , with power cross-spectral matrices SXx(W,0), Sxy(w,0), S yy(W,0)

parameterized by 0, and denote the power cross-spectral matrices of the joint vector

(xT (t),y (t)) T as S(w,0).

Statistical inference is considered on a class of linear Gaussian processes

parameterized by 0. Specifying a parametric model for the conditional process y(t), t < s,

given x (t), t < s, implies a causal linear model of the form

y(t) = q(t) + E h(t-T;O)x(r) - q(t) + r(t)
'r=0

where h(t;0) is a causal linear system giving the response r(t) due to the past exogenous

input x(t) and where q(t) is the error in predicting y(t) by r(t). From linear prediction

theory, the transfer function of h(t;0) = Sy(WO)Sx(wO), and the error q(t) in predicting

y(t) is uncorrelated with r(t) with power spectrum S qq(W;0) = S yy(w,0) -

H(w,O)SXX(w,O)H (w,O). Note that any class of parameterized models S(w,0) can be

equivalently specified by the parameterized models (S qq(W,O),H(w,O)) which will prove
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more convenient.

It is convenient to work entirely in the frequency domain and specify the probability

distribution and likelihood functions in terms of the power cross-spectral density matrices

and Fourier coefficients. For simplicity the time series case with t a scalar is developed

below, however the results generalize easily to the random field case of a vector t. Then

asymptotically the log likelihood function is given following Whittle (1953) and Larimore

(1977) with Q(w) = Y(w) - R(w) and using the relationship E{Q(w) = Y(w) - R(w) and

using the relationship E{Q(w)X (w)} = 0 by

N N - * 1 dw
log p(x,0) =--log2 r --f [logj S (w)l + Q (W)Sq()]-

-7r qq qq 2ir -

and the elements of the gradient vector Dlogp/0 and Fisher information matrix F(O) are

•1 H(wa dw- x __~ ( ) qq( -- 1]  -

02 1ogpFij(O) = - E { -}

ao. ao.-

-"2-f 1 as q(W) {S-l(w Sqq(w) + H(w)}] dw
q 0. +0. 00. 27r

-r I qj

5.2 Simultaneous Confidence Bands

Let yeF be a variable such as frequency or time, and consider a p-dimensional
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complex vector f (-,O) with components that are functions of y and 0 having continuous

second derivatives with respect to the parameters 0. For example, the elements of the

vector function f(-,0) could be the elements of the spectral matrix S, the squared

magnitude coherencies, the impulse response functions of a spectral factor, or the

covariance functions of the process. Asymptotically

f(Y,0)- f(Y,0) = f0(-y,0)(0- 0)

where fo(-",O) denotes the matrix of partials Of (7 ,0 )/ 8 0T evaluated at 0 = 0. This

expansion and the Scheffe method (Scheffe, 1953, 1959, p. 68-70) of simultaneous

confidence intervals as applied in Newton & Pagano (1984) lead to simultaneous confidence

bands in the univariate case. For multivariate processes, it is of considerable interest to

extend these results to simultaneous confidence bands on vector and matrix functions of

the parameters, e.g. the spectral matrix. The extension that we will consider is the

quadratic form

{f(-0) - f(-Y 08) P( 0){f('YO) - f(%,0)} (2.1)

which will be bounded as a function of -. In the multivariate case, there is a choice to be

made for P. For reasons of invariance and to obtain an equally tight confidence bound on

any linear combination of f(7 ,O) - f(-y,O), P is naturally chosen as the inverse of the

covariance of (2.1).

In the sequel, a general P is used and then specialized to this natural choice. The

basic mathematical result needed for such an extension is given in the Appendix and is

used to prove the following theorem on simultaneous confidence intervals.
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Theorem 1. Consider a parametric family of stationary Gaussian vector processes

with power cross-spectral density matrices S(7,0) for OE0 satisfying regularity conditions

(Whittle, (1953), and for which the parameters are locally identifiable so that the Fisher

information matrix F (0) as given by (1.1) is full rank. Let y(1), y(2),...,y(N) be a sample

realization and 0 be an asymptotically normal and efficient estimator of 0. Let P(Y,0) be a

Hermitian Matrix. Then as N - c, the probability is at least 1 - a that simultaneously for

all 7WF the true p-vector function f(-y,0) is bounded by

{f(Y,O) - f(7 ,O)} P(,9){7,0) - f('y,O)}

Xaq tr f0(7,0) F-I (0)fd (-Y,0)PI (7,9)

where q is the dimension of the vector 0 and where X2  is the upper a critical point of the~aa,q

chisquared distribution on q degrees of freedom.

Proof: As shown by Rothenberg (1971), the parameters are locally identifiable if

and only if the Fisher information is full rank. Let f(7) and f(-y) denote f (y,0) evaluated at

0 and 0 respectively. The vector random variable N1/ 2 {f(7 ) - f(-y)} is asymptotically

distributed as the normal random vector N1/ 2 f0 ('Y,0)(0- 0). Asymptotically (0-

0)TF(0)(0- 0) is a X random variable, whei, F(0) is proportional to sample size N as ina,q

(1.1). So the probability is 1 - a that the true 0 satisfies (0- 0)TM(O - 0) 1 where M =

F(O)/X a,q. From the Appendix, this inequality is satisfied if and only if11H(O- 0)121 * p1/2( %

_trHM 1 H for all pxq -dimensional matrices H. Since the set {H = P 0(,O)f0 (-y,0) for

y2F} is possibly a proper subset of all pxq -dimensional matrices H, it follows that

asymptotically with probability at least 1 - a the inequality.

S{}() - f(7 )}*P(7 9){ }(7 ) - f( 5)}
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=N{ff(7,0)(O- 0)}*P(7,0){fo(7,)(0- 0)}

__NX a,q tr f0(',9) F (0) f0(y0)P(-,) (2.3)

is satisfied simultaneously for all 7eF.

For the natural choice of P = {f0(0,0) F- (O)f*( 7 ,)} t , using t to denote the pseudo

inverse of the covariance of (2.2), the inequality (2.3) becomes

{f(7) - f(-Y)} {f (7,0) F l(9)f(-Y,O)}t{f(Y) -f (-Y)} <rX2

where r = Rank (P)

The relative squared spectral error tr[S-(w){S(w) - S(w)}]2 is a fundamental

quantity in measuring the accuracy of a spectral estimation procedure. The integral of this

quantity is asymptotically the Kullback-Leibler information of negative entropy

(Larimore, 1983) which is a fundamental statistical measure of model approximation error.

The expected value of the integral is proportional to the number of estimated parameters

divided by the sample size (Larimore, 1982). From Theorem 1, simultaneous confidence

bands on the sample relative squared spectral error are given by the following theorem.

Theorem 2. Under the conditions of Theorem 1, as N- w , the probability is at least

1 - a that simultaneously for all wux the sample squared relative spectral error is bounded

as

2trIS' (W) SM) - SM)}-
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< X2qtr q S- 1(,) -

a ,q kit

where {gk,$J0 )} = G = F-1 (0).

Proof: Asymptotically S(w) and S(w) are equal so that we may consider its inverse

in (2.3) a constant denoted S(w). To apply Theorem 1, we consider the Hermitian matrix

A(w) = S- 1/ 2 {S(w) - S(w)}S -1/2(w) and express the squared relative error

symmetrically as

tr[S-l (w){S(w) - S(w)}= trl-/2(w)S-1/2(W)] 2

-trAA=trAA =iEja iaij=f (w)f(w)

where f (w) = vecA(w) is a vector containing the elements of the matrix A(w). Application

of Theorem 1 to the vector function f (w) and rearrangement as in (2.4) proves the

inequality. Expanding S(w, 0) as in (2.4), the equality follows from

Etr[s- (w){S(w) - S (w)}2

=tr E S-(w,O)S(w,O) .E(T0)(_0) S (  S(o ,)
k ,j 90k  I

and using E(O - 0)(0 - 0)T = F 1 from the asymptotic efficiency of 0

In principle any quadratic form in the components of the spectral matrix could be

used as in Theorem 1 by introducing a weighting matrix P(w,0). For confidence intervals
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!
on the spectral matrix, the weighting of the inverse covariance of the error in estimating

the spectral matrix gives tightest confidence bands which can be expressed as

, - OvecS(w) Ovec S(w) X2{_c Is()g }fki(b jivec{S(w)} <X 2
ve Sw-S }k,t 8k 9 l -a,q

For a given confidence level a, this gives a simultaneous confidence band for all frequencies

w2T2 as a quadratic form in the elements of S(w) - S(w),

5.3 Entropy and Spectral Accuracy

Consider the following predictive inference setting involving an observed

informative sample =(xT(1),y T(),...,xT(N),yT(N)) of size N used to estimate the

process model, and similarly consider a conceptual predictive sample v of size M used to

evaluate the accuracy of the estimated model. The predictive sample is assumed to be

identically distributed by independent of the informative sample. Consider the problem of

inference on the parametric class {p(v,0), O} of models with probability densities p(v,0)

based upon the informative sample u. Consider the conceptual repeated sampling

experiment where on each trial the samples u and v are each drawn independently from the

process S(wO*) with 0, assumed to be the true parameter value. An estimative model

p=p(v,0(u)) is chosen for the density of v by some parameter estimation scheme 0(u). The

expected negative entropy, also known as the expected Kullback-Leibler discrimination

information or expected I-divergence, is a measure of the error in approximating the true

density p, of v by the estimate p and is given by

p(v,O*)
R(p*,p) = EuK(p*,p) = Eu J p(v,0*) log -dv (3.1)

p(v,0(u))
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where Eu denotes expectation relative to u and K denotes the Kullback-Leibler

information. The negative entropy measure follows as the natural measure in the

predictive inference setting from the fundamental principles of sufficiency and repeated

sampling (Laximore (1983)). This approach applies to very general modeling methods such

as nonparametric, semi parametric or parametric procedures as well as methods including

decisions on model structure or order such as those used for AR and ARMA modeling.

Let lower case variables denote a sample of size M of the predictive sample, e.g.

y=(y T(1),y T(2),... ,yT(M)) T and qyy denote the covariance matrix of y. By expressing the

density p(y,x;O)=p(y-r;O)p(x;O) in terms of the conditional random process q(t)=y(t)-r(t),

the log likelihood separates with the density of x(t) in many problems not a function of the

unknown parameters or at least a function of a separate set of parameters. The

I-divergence (3.1) thus becomes

p(q,0*) p(xo*) dx
K(p*p) = J p(q,O*) log - dq + f p(x,O,) log

p(q,O) p(x,O)

= K(p*(q),p(q)) + K(p*(x), p(x)) (3.2)

This conditional viewpoint is tken in the following where only the first term of the

I-divergence is considered. Inclusion of the second term is tantamount to modeling the

joint vector time series involving the two series x(t) and y(t) jointly rather than as

exogeneous and endogeneous respectively. The joint case is included as a special case of

y(t) a vector process with no input x(t) which will be discussed as a particular instance of

the model throughout the paper. One further expression for the I-divergence will be very

useful
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K(p*(q),p(q)) = E log p(y-r, qq) + E log p(y-r, Eqq)

= E log p(y-r, qq ) + E log p((y-r)+(r-r),E qq)

T 1= E log p(y-r,E qq ) + E lop g((y-r), + E(r-r) E qq(r-r)

where E denotes expectation with respect to the density p,.

Let S denote an estimate of S. We will need to assume tht S(w) is continuous and

that Sqq (w, ) and S qq(W, ) are positive definite for wE[-r,7r]. In the discussion, the

redictive sample v will be considered to be conditional on x(t) and to have an infinite

sample size M. This will require the normaalization of the negative entropy and

I-divergence by the sample size M. The I-divergence per sample time conditional on x(t),

which we will denote I(SS) and call I-divergence for brevity, can be expressed using (3.2)

as (Kazakos & Papantoni-Kazakos, 1980)

1
I(SS) = 1 im-K(p(vM,0*),p(vMO(uN))

M- M

S7r1 dw-f flogiS qq(w)S qq- (w)I + tr[I - S qq(w)Sqq-(w) --
-7ri - r{lojqqlq[qHq

1T 1~-HwI dw
- tr{S) H(w)]SSxx(w) --Iw)] 2r (3.4)

-7r

where the subscript emphasizes that the sample of size M of v becomes infinite. The

negative entropy per sample, or negentropy for brevity, is defined as N(S,S) =
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1 imR(p*,p). Note that the I-divergence is composed of two terms, the last due to the
M! I
error estimaating the transfer function H(w) and the first due to the error in estimating the

spectrum S qq(w) of the noise q(t). A useful approximation for the first term in (3.4) is

1 1 . 1 dw2r flogISqq()Sqq (w)I +tr[ - Sqq(W)Sqq--(w) d2

ftrfs-1(,,)[s.M°(,,,)-2
4. qq qq qq

which holds to second order in the elements of Sqq as is easily shown by comparing first

and second derivatiives of the integraands. This is a generalization to the multivariate case

of the integral of the squared relaative error. Thus the I-divergence is approximately a

quadratic form in the estimation errors of Sqq(W) and H (w), and these quadratic forms do

not intereact, i.e. there are no cross terms.

5.4 Normalized Spectral Error in Principal Components

In the mulple time series case, the spectral measure has an intuitive interpretation

in terms of principal components of the power spectrum in the frequency domain.

Principle component representations of the spectral matricies Sxx(w) and Sqq(w) have the

form.

J(W)Sqq(w)J (w) = D(w), L(w)Sxx(w)L (w) = E(w) (4.1)

where J(w) and L(w) given as a functionof frequency w are unitary matrix transformatons

so J(w)J (w)=I=L(w)L (w) which diagonalize Sxx(w) and Sqq(W) repectively and where
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where G(w)=J(w)H(w)L (w) is the transfer function H(w) expressed inthe coordinate frame

of the principal component series .(t) and (t). The squared magnitude error I G.j(W) -

G, (w) 2 in the i, j element of the transfer function is weighted by the input signal to
iJ

output noise ratio DiiE for the pair ij.
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CHAPTER 6

6. DETECTION OF ABRUPT MODEL CHANGES

In this section we apply the tools developed so far to the problem of

abrupt change detection. We then present some experimental results.

6.1 Algorithm Development

Consider the situation depicted in Figure 6.1, in which the true time-

series model changes from M0 to M1 at time t-di , where t is the present

time. Suppose

MO 
M

•I I

historical testing !

interval I interval I

t-d0  t-dl  t

Figure 6.1 Changing Time Series Model

that we have data back to time t-dO and that the true model is M0 in the

interval (t-do, t-dj).

We wish to detect this change in the model. In this example, fitting a

single model to data over the interval (t-dO , t) should result in greater

fit errors than fitting one model over the interval (t-do, t-dl) and

another model over the interval (t-dj, t). The crucial issue is to

determine an appropriate selection measure so as to be sensitive to

I
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changing models, while at the same time not being too sensitive to noise.

Over-sensitivity to noise will result in deciding that model changes have

occurred when, in fact, they have not. Low sensitivity to model changes

will result in missing changes which have occurred in the model. Another

obvious problem is how best to select the testing intervals, (t-d0 , t) and

(t-dI , t), to minimize the time required to achieve accurate detection. We

consider first the selection measure.

Over the interval (t-d0 , t) we can find the model which minimizes the

AIC:

dk

AIC (k) = - 2 log p(e(t-d0 + i) 0 ) + 2 M(k) (6.1)
i=1

where M(k) is the number of independently adjustable parameters and where we

have assumed a sampling time increment of one, for convenience.

If we now divide the interval (t-do, t) into two subintervals,

(t-d0 , t-dI) and (t-dl, t), we determine minimum AIC models for each subin-

terval

d 0  d 1 k

AIC0 (k) = - 2 [ log p(e(t-d0 + i). 0 ) + 2 M(k) (6.2)
i=l1

do0 ^k

AICI(k) = - 2 1 log p(e(t-d0 + i) 5 ) + 2 M(k) (6.3)
i=d 0 -d 1 +i

Now assume that
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= arg min AIC(k)

ko* = arg min AIC0 (k)

k* = arg min AIC 1 (k)

.k* ^ ko* k1*

and let the corresponding models be parametrized by e , 0,

respectively.

Then the model selection criterion is based on comparing AIC(k*) with

AICO(ko*) + AIC(kl*) and selecting the model(s) which give the least value.

We can simplify the calculation in the case that do > > dl and the model

does not change too much, in which case we expect that k* k0* ,

ek* . 9 0 k 0*
. In this case we can define the AIC difference as

AAIC* = AIC(k*) - AICO(ko*) - AICI(kl*)

do 0k*

- 2 d log p(e(t-d0 + i) 1 0
i=d 0 -dl+l

+ 2 log p(e(t-d0 + i)j a 1  ) - 2 M(kl*) (6.4)

i=d0 -dl+l

and the decision rule is

< 0 ; declare "no change" (6.5)

> 0 ; declare "change"

Note that AAIC* may be written as

d0  p(e(td 0+i) 
k l*

AAIC* = 2 0 log ) - 2 M(kl*) (6.6)
i-1d0d+1 p(e(t-d 0+i)j 6 k* )
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which is the likelihood ratio in favor of the best model in the interval

(t-d1 , t) to the best historical model evaluated over the same interval,

but biased off by the number of parameters of the best model in the inter-

val (t-dl, t).

If we specialize this result to the linear prediction problem under

study here, we see that

AAIC* dl tlogi S(k*)l + tr S(k*) S(k*) -I }

- dl flogi SI(kj*) j + m}
- 2 mkl* (6.7)

where S(k*) is the theoretical covariance matrix of prediction errors for

the historical model fitted on the interval (t-do, t-dj), SI(kl*) is the

theoretical covariance matrix of prediction errors for the model fitted to

the data on the interval (t-dl, t), and S(k*) is the actual covariance

matrix of prediction errors for the historical model, evaluated on the

interval (t-dl, t). Now let AS(k*) = S(k*) - S(k*).

Then

AAIC* = dl log SI(k) exp + tr AS(k*)S(k*)

(6.8)

Thus our decision parameter is
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y = log I S(k,) _ 2 mkI  + tr AS(k*)S(k*) (6.9)
I S 1 (kl*) dl

and the decision rule is

< 0 ; declare "no change"

y (6.10)
> 0 ; declare "change"

6.2 Experimental Results

The abrupt change detector was tried on a changing autoregressive

model. On the interval t C [1, do], the actual model was

y(t) = 1.65 y(t-1) - 0.665 y(t-2) + u(t) (Model 1) (6.11)

where u(t) was zero-mean white Gaussian noise with variance of 1. This

model has two real stable poles at 0.95 and 0.7. The actual model was then

changed to

y(t) = 2.5 y(t-1) - 2.11 y(t-2) + 0.595 y(t-3) + u(t) (Model 2) (6.12)

on the interval t £ (do + 1, do + d,]. This model has three poles at

0.7, 0.9 + 0.2i, 0.9 - 0.2i.

The first trial used do = 80, dl = 20. The resulting covariance matri-

ces on the interval (1, do] were

11.0808 10.9642 10.7662 10.5378 10.2860'
10.9642 11.0018 10.8992 10.7144 10.4733

S pp 10.7662 10.8992 10.9484 10.8566 10.6614
10.5378 10.7144 10.8566 10.9144 10.8144
10.2860 10.4733 10.6614 10.8144 10.8619
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S11.0439 10.9089 10.7124 10.4822 10.2222'
10.8318 10.6534 10.4500 10.2258 9.9723

S pf I  10.5900 10.4015 10.1993 9.9753 9.7098
10.3510 10.1607 9.9542 9.7122 9.4267
10.0978 9.9061 9.6859 9.4296 9.1241I

I

11.1612 11.1214 10.9673 10.7430 10.4764
11.1214 11.2356 11.1760 10.9937 10.7336Sff1 10.9673 11.1760 11.2697 11.1831 10.971110.7430 10.9937 11.1831 11.2537 11.1474
10.4764 10.7336 10.9711 11.1474 11.2135

By performing an SVD, we obtain

0.6655 0.4685 -0.4465 0.3351 -0.1607
0.4239 -0.2456 0.7166 0.4911 0.0726

U = 0.3888 0.2135 0.3803 -0.7320 -0.3504
0.3596 -0.1033 -0.1198 -0.3149 0.8640
0.3112 -0.8148 -0.3579 -0.1072 -0.3157

7.2182 0 0 0 0

D1 0 0.1863 0 0 0
0 0 0.1032 0 0

0 0 0 0.0207 0

0 0 0 0 0.0165
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0.4605 -0.6945 0.5094 -0.1666 0.1355

0.4569 -0.2407 -0.4337 0.4939 -0.5489
V= 0.4493 0.0706 -0.5097 -0.0174 0.7301

0.4398 0.3337 -0.0833 -0.7382 -0.3787

L 0.4289 0.5860 0.5344 0.4279 0.0627

The resulting values of AIC(k) for different orders k are, neglecting

constants,

AIC(1) = - 2.150

AIC(2) = - 2.264

AIC(3) = - 2.243
AIC(4) = - 2.195

so that k* = 2, which is the correct order, is selected. The estimated

model is y(t) = 1.843 y(t-1) - 1.0081 y(t-2).

On the interval [do + 1, do + dl], the covariance matrices were

1.7647 1.7624 1.6008 1.3214 1.1104
1.7624 1.9451 1.9171 1.7039 1.4781

Spp 2  4 1.6008 1.9171 2.0772 2.0067 1.8375
1.3214 1.7039 2.0067 2.1332 2.0981
1.3214 1.7039 2.0067 2.1332 2.0981

16394 1.4902 1.4677 1.6660 2.16221
1.4905 1.2481 1.1833 1.3743 1.8518

= 1.2626 1.0238 1.0057 1.2397 1.7310

pf2 .9897 0.8111 0.8554 1.1288 1.6058

0.8331 0.7084 0.7783 1.0178 1.4219
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21.7259 1.7733 1.9101 2.2212 2.7981
1.7733 2.1250 2.5776 3.1739 3.9927

Sff 2  1.9101 2.5776 3.4770 4.5339 5.7802

2.2212 3.1739 4.5339 6.1817 8.0268
2.7981 3.9927 5.7802 8.0268 10.5912

Performing the SVD yields.

, 0.9394 -0.1382 -0.2689 0.0560 -0.1513

0.0073 -0.8145 0.4181 0.3600 0.1791
, 2 = 0.1124 -0.1507 0.5108 -0.7606 -0.3538

0.2936 0.5410 0.6957 0.3074 0.2065
0.1361 -0.0455 -0.0891 -0.4408 0.8816

3.5041 0 0 0 0

0 0.6770 0 0 0
D2 0 0 0.2473 0 0

0 0 0 0.0326 0
0 0 0 0 0.0094

0.3352 -0.7554 0.4483 -0.2558 0.2250

0.3611 -0.3926 -0.3766 0.6815 -0.3305
V 0.4033 -0.0185 -0.6095 -0.6546 -0.1926

0.4766 0.2819 -0.1621 0.2039 0.7909
0.6062 0.4422 0.5093 0.0107 -0.4213J

The resulting values of AIC(k) are, again neglecting constants,
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AIC(l) = - 0.960
AIC(2) = - 2.266

AIC(3) = - 2.323

AIC(4) = - 2.223
AIC(5) = - 2.123

so that k* = 3, as desired. The estimated model is

y(t) = 1.9456 y(t-1) - 1.1485 y(t-2) + 0.0483 y(t-3)

Note that, with the sparse amount of data available, the coefficient

errors are relatively large and the two estimated models are relatively

close to each other.

The AAIC criterion was used to test for a change in the time series

coefficients. Since we have only one output, the criterion is

AAIC log S(k*) S(k) - S(k*) 2 k1
S1 (kl*) S(k*) dl

Using k* = 2, kl* = 3, S(k*) - .0940, Sl(kl*) = .0726, S(k*) = .0903,

d I = 20 yields,

AAIC = 0.2583 - 0.0394 - 0.3.- - 0.0811

so that a "no change" decision is made, but just barely. Note that the

actual covariance on the second interval using Model #1 is actually less

than for the first interval, as a result of using only a small testing

interval.

We next tried the test over larger intervals, keeping a 4:1 ratio bet-

ween the historical interval and the testing interval. The intervals used

were 160 for the historical interval and 40 for the testing interval.
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The covariance matrices for the historical interval were

6.4177 6.3504 6.2021 6.0182 5.8335 1
6.3504 6.4177 6.3504 6.2022 6.0183

S 1pp 6.2021 6.3504 6.4170 6.3494 6.2006

j6.0182 6.2022 6.3494 6.4153 6.3470

5.8335 6.0183 6.2006 6.3470 6.4119

6.3504 6.2014 6.0149 5.8244 5.6495

6.2013 6.0147 5.8242 5.6493 5.4869

Spf = 6.0169 5.8282 5.6544 5.4919 5.3310

5.8316 5.6606 5.4999 5.3387 5.1657

5.6655 5.5089 5.3502 5.1770 4.9871

6.4187 6.3529 6.2057 6.0202 5.82941

6.3529 6.4251 6.3642 6.2194 6.0332

S = .j 6.2057 6.3642 6.4436 6.3856 6.2387

6.0202 6.2194 6.3856 6.4671 6.4058

5.8294 6.0332 6.2387 6.4058 6.4835

The results of the SVD were

0.6995 0.4349 -0.2706 0.4797 0.1353

0.3997 -0.7769 0.1851 0.3162 -0.3202

U1  0.3573 -0.0762 0.5794 -0.3109 0.6589

0.3481 0.3521 0.3443 -0.4460 -0.6613

0.3197 -0.2785 -0.6620 -0.6118 0.0879

5.3574 0 0 0 0

0 0.1611 0 0 0

0 0 0.1026 0 0

0 0 0 0.0233 0

0 0 0 0 0.0070

6-1
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0.4693 -0.8139 0.1915 -0.2626 0.1082 1J 0.4616 -0.1011 -0.5037 0.6123 -0.3847
V = 0.4489 0.3182 -0.4470 -0.2359 0.6647

0.4342 0.3743 0.1072 -0.5518 -0.5962S0.4204 0.2933 0.7059 0.4426 0.2075

The values of AIC (k) were

AIC(1) = - 2.3072

AIC(2) = - 2.4871

AIC(3) = - 2.4795

AIC(4) = - 2.467

AIC(5) = - 2.4545

so that k* = 2 is selected. The estimated model is

y(t) - 1.6777 y(t-1) - 0.7178 y(t-2)

which is much closer to the actual model (6.11), due to the increased data length.

The model over the testing interval was next found. The covariance matri-

ces were

20.6940 20.2655 19.2378 17.6822 15.7286
20.2655 20.4909 20.0699 19.0219 17.4532

Spp 2  19.2378 20.0699 20.3055 19.8666 18.8081
17.6822 19.0219 19.8666 20.0831 19.6334
15.7286 17.4532 18.8081 19.6334 19.8397

20.4906 19.6758 18.3328 16.5805 14.5504'
19.4580 18.1453 16.4322 14.4431 12.2933

s = 17.9266 16.2349 14.2789 12.1690 9.9935
pf2 15.9897 14.0540 11.9786 9.8473 7.7296

13.7888 11.7306 9.6332 7.5625 5.5657J
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, 20.9398 20.7220 19.S651 18.4736 16.6762"
20.7220 21.1467 20.8735 19.9608 18.5264

s-f 19.8651 20.8735 21.2276 20.3927 i9.94410

184736 19.9608 20.8927 21.1353 20.8230

16.6762 18.5264 19.9440 20.8230 21.0965

The SVD yielded

0.8905 0.4123 0.0935 -0.1344 -0.1008]

0.3705 -0.4959 -0.6851 0.2227 0.3128
U2 = 0.2259 -0.4936 0.5293 0.5778 -0.3023

0.1280 -0.4076 0.4613 -0.5170 0.5808
0.0473 -0.4175 -0.1701 -0.5755 -0.6807

9.7032 0 0 0

0 1.7256 0 0 0

D 0 0 0.0533 0 02 0 0 0 0.0158 0

0 0 0 0 0.0117

0.4557 -0.6682 0.5738 -0.1019 0.0784

0.4670 -0.2754 -0.5643 0.6055 -0.1447

V • 0.4617 0.0760 -0.4483 -0.6411 0.4112
2 0.4410 0.3630 0.1371 -0.2325 -0.7752

0'.4081 0.5832 0.3640 0.3974 0.4504

The resulting values of AIC(k) were

AIC(1) = 0.3771

AIC(2) = - 2.7253
AIC(3) = - 2.7595

AIC(4) = - 2.6753
AIC(5) = - 2.6253

so that kl* = 3 was selected. The resulting estimated model was

y(t) = 2.3931 y(t-1) - 1.977 y(t-2) + 0.7421 y(t-3)
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which is much closer to the actual model (6.12) than the estimate based on

half as many data points.

The AAIC criterion was then applied to test for a model change. Using

(6.13) with k* = 2, kl* = 3, S(k*) = 0.0811, Sl(kl*) = 0.0564,

S(k*) = 0.1119, we get

AAIC = 0.3632 + 0.3801 - 0.15 = 0.5933 (6.14)

which yields a "change" decision. By comparing (6.14) to (6.13) we note

several things. The first term, which is log S(k*) - log Sl(kl*) now more

strongly indicates a change, due to better model fit. The second term,

which is the effect of modeling error on the measured error covariances,

also more strongly indicates a change due to increased data length, which

produces a more accurate estimate of the true error covariance during the

testing interval, using the "no change" hypothesis. Finally, the last term

more strongly indicates a change, since the bias for a "no change" decision

is reduced due to increased data length. Thus we see that all three terms

in the AAIC criterion contribute to the final decision, and each one is of

importance in achieving an accurate decision.
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CHAPTER 7

OPTMAL ADAPTIVE IDENTIFICATION OF CHANGING SYSTEMS

7.1. Introduction

A fundamental problem in tracking a target performing evasive manuvers is

adaptation to changes in the dynamical characteristics of the target motion. In previous

approaches to target modeling, simplistic models have largely been used which do not take

into account the changing characteristics of the target motion as different manuvers are

performed by the target. To improve upon these methods requires the development of new

methods that are able to adapt to the changes in target motion characteristics which may

be either slowly varying or abrupt.

Previous approaches to adaptive identification and detection of abrupt changes in

systems have had a number of deficiencies. Adaptive tracking of slow changes has been

largely adhoc and not based upon a sound statistical theory. Much of this work has been

done in the context of recursive identification using exponential weighting. This is of

course very attractive from a computational point of view. For detecting abrupt changes

the literature of failure detection is applicable primarily to the comparison of a limited

number of specific simple hypotheses involving jumps in the states or simple actuator or

sensor failures. This does not include the case of a dynamical system where abrupt changes

can occur in the characteristics of the dynamics. The difficulty is the vast number of

possible changes in dynamical structure and order that can occur. A further problem is

that the change can occur at an arbitrary time which requires the comparison of a

multitude of nonnested hypotheses which is not delt with by classical hypothesis testing

theory.
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The objective of this paper is to discuss these current unsolved problems in adaptive

systems and to propose a new approach which is believed to solve the problem of

adaptation for changing systems in a fundamental way. These current problems have been

discussed to some extent in the recent dissertation of Hagglund (1983), with some

approaches proposed in the context of recursive prediction error identification. In that

work, a number of particular adaptive identification and detection problems were defined,

and the desired properties of the solution were discussed. The proposed solutions were

shown to work on simple low order systems. However, a number of problems were not

addressed that occur in higher order and multivariable systems. These difficulties in

include the lack of invariance of the procedures in general, the nonexistence of a global, and

the lack of a procedure of the determination of an appropraiate model state order. These

are indeed very difficult problems some of which have not been completely solved even for

the offline case.

In this paper we share much of the intent stated in Hagglund, but take a much more

general approach to solving these problems. The Kullback-Leibler information (1959) or

entropy measure of model approximation error has recently been shown to follow naturally

from the fundamental statistical principles of sufficiency and repeated sampling in a

predictive inference context (Larimore, 1983). The Akaike information criterion (Akaike,

1973) is an unbiased estimate of the entropy measure which is optimal for large samples

(Shibata, 1981). In this paper, the entropy and predictive inference approach is applied to

the problems of adaptive tracking of slowly changing processes and abrupt changes. This

requires the extension of the AIC procedure to the case of comparing different models over

different data intervals whereas the AIC procedure was originally developed for

comparisons of different models on the same data interval. The concepts and notation

developed in Larimore (1983, 1985) is used in the development.
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The structure of the paper is as follows. The approach to the general problem of

adaptation is discussed in the next section. To generalize the AIC procedure, some

properties of maximum likelihood estimators are derived for nonnested classes of models in

section 7.3 Section 7.4 gives a generalization of the AIC estimate of negentropy. Section

7.5 discusses the use of this generalized AIC in adaptative tracking while section 7.6

describes its use in abrupt change detection.

7.2. Approach to Adaptation

The use of nredictive inference and entropy concepts and methods is the basic

approach taken in adaptation to system changes. To formulate the problem, consider a

division of a time span into a set of disjoint intervals whose union is the whole time span.

With each time interval we associate a model for the dynamical system which is

determined from the observed data using a particular model selection method. In this

approach, different divisions of the time span into time intervals are considered as well as

different model selection procedures. This allows the consideration of very general models

that include slow as well as abrupt changes as described below. The details of this are

given in Sections 7.5 and 7.6, with a brief overview of the concepts given here.

Consider first the case of tracking slow changes. Suppose a given time span is

divided into a set of time intervals. Several different intervals sets will be considered

involving divisions of the time span using different interval lengths. On each time interval

of each interval set, a best model will be determined by choosing a model from a class of

models using say the AIC procedure. The class of models considered can include different

state orders and other structural characteristics. For each set of intervals, a composite

model consists of the models associated with the various intervals of the interval set.

Composite models for several interval sets can be compared to determine which division of
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the time span into intervals leads to the bet composite model. If the intervals are chosen

to be too long, then changes in the process during the intervals will lead to increased

prediction error. On the other hand if the time intervals are too short, then variability in

observations and the use of an increased number of total parameters in the composite

model will also increase the prediction error. As a result, there will be an optimal choice of

division of the time span into time intervals. In practice it is not necessary to obtain the

optimum division but only a good approximation which will determine an ap-ro-imately

optimal model update rate for re-identifying the model dynamics and noise process

characteristics.

Now consider the case of abrupt change detection. suppose that the above tracking

of slowly changing process characteristics is done and the optimal slowly changing model is

identified. Then suppose that an abrupt change occurs at an unspecified time following the

end of the time span used in tracking the slow changes but within the update rate used in

slow tracking. We consider the new time span that includes the failure and consider

divisions of it into intervals. On each interval, a model is fitted using say AIC to

determine a model from a class of models. Now the principle question is whether the fitted

models on the various intervals are significantly different from the last model chosen by the

slowly changing adaptive procedure.

To actually make the proposed comparisons for adaptive tracking and abrupt

change detection requires the development of new results in predictive inference since

different models are being compared across different time intervals, and non-nested

multiple comparisons are also involved. Neither of these cases is considered in the previous

theory of AIC and related predictive measures. This theory is developed in the following

sections.
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7.3. Constrained Maximum Likelihood Estimation

In this section, properties of the maximum likelihood parameter estimates are

developed for the case that the true probability model is not contained in the class of

parameterized densities that are considered for inference. The classical development of the

asymptotic consistency and minimum variance of maximum likelihood estimators is for the

case wheie the true density id contained in the parametric class.

The predictive inference framework as in Larimore (1985) is adopted here with

p(q,O) the parameterized probability density where 0 is a vector of parameters, q is the

informative sample and r is the predictive sample. Suppose that the parameter vector

07T =(01,02,...) is a finite or infinite set of parameters, and for each subset of distinct

positive integers k=(kl,...,km) consider the subspace® k of 0 such that only the

corresponding 0k "".0k are nonzero where Ok denotes a member of® k' and let Ck be the

class of models C k={p(q,0k),E®k}, These classes of models are in general nonnested so

that we do not in general have C kCc i or jC k. The maximum likelihood estimator for the

class C k will be denoted as 0q).

The development of the maximum likelihood theory is straight forward for the case

where Taylor series expansions are possible. This holds under the following regularity

conditions (Cox & Hinkley, p. 281):

(i) The parameter space is closed and compact.

(ii) The probability distributions defined by any two different values of 0 are distinct.
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(iii) The first three derivatives of the log likelihood tq,O) with respect to 0 exists in the

neighborhood of the true parameter value almost surely. Further, in such a neighborhood,
-1

n times the absolute value of the third derivative is bounded above by a function of q,

whose expectation exists.

In particular, these conditions permit the interchange of expectation and differentiation up

to second order.

In the discussion various order models are considered, and the relationships between

the various orders is developed. The log likelihood function of the informative sample q

will be denoted by i(q,O), and the gradient row vector and Hessian matrix denoted '(q,O)

and "(q,O) respectively. Expectation, denoted E, will be with respect to the true density

kp(q,O) unless stated otherwise where 0 onto Ok as the parameters 0 EOk minimizing the

negentropy Rq relative to the informative sample q

R q 0,0k) = Ei(q,Qk ) (7.1)

At the minimum 9k, the gradient of (3-2) is zero so from the regularity conditions

E'(q,0k) = 0,

and the minimum is unique if and only if the expected Hessian, denoted Dk=Ee'(q,k).
q

Expanding (7-1) in a Taylor series gives a second order expression for the information

distance which holds asymptotically for large sample size of the informative sample

R q(,0k) = E[1( 9k) - 1(0k)] + E[i(0)- (0k)j
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- - ( - -E[ - gkT e (g)( ok)(0k - a)] + Ei(0) -

2

1 0'-k'k D + Rq(O, -)

To determine the moments of the maximum likelihood estimates 0k, consider the

First order equality

0 = t'(q, k) = e(q,akk)Til,(q,ak)

Taking expectation with respect to the true density and using (7-2) gives the equation

D k(EOk-Gk) = 0

that holds asymptotically for large informative sample N. For Ok identifiable, i.e. k

unique, Dkis nonsingular which implies that to first order
q

[ 6k = k

Now using (7-4), the covariance of the estimation error is

E()k- k)( 0k-0k)T= (D k-'E{IT (qk)11(q,kl)}(D k)- l

Note that in the unconstrained case, the middle term which is the Fisher information

matrix is equal to minus the expected Hessian Dk but this is not in general true for theq,

constrained case.
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7.4 Estimation of Entropy

For decision on model parametric order and structure, i. it necessary to estimate the

negative entropy based on the sample. One such procedure is due to Akaike (1973. We

consider the case where the informative sample q and the predictive sample r are

independent. For each selection of a parameter subset k =(kl ..... km), the Akaike

information criterion for comparing the maximum likelihood estimators is

AIC(k) = -21ogp(q,0k(q)) + 2K(k)

where K (k) is the number of parameters, i.e. the dimension on Ok. The minimum AIC

estimator (MAICE), denoted 0A(q), is OA(q)=0k(q)(q) where k(q) is the parameter set

minimizing AIC (k) is an unbiased estimator of the negative entropy (7-1) based upon the

informative sample and the assumed model structure. The predictive sample is essentially

replaced by the information sample, and the term 2K(k) is an adjustment for the bias due

to the correlation between the informative sample q and the estimate Ok(q).

Following Akaike, we use the maximized log likelihood Iq (k) = I(q,Ok(q)) as an

estimate of the relative entropy and compute the bias in the procedure. Consider the

expected log likelihood difference using (7-3)

Eft(O) - t(0k)J = E[t( k) - e( k)] + F[It() - e(Ok)

= - E[1)(0k)(0k - 6 k)] - E[I k - 0k)TI"(0k)( k - )] + E[(O) - 1(ok)]

E[( k - k)"f'(ak)((O - 0 - 0k)] + R(0 0k)
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=-trIdim(0k) + R(, ) = -dim(0k) + R(Ok)

where the third equality follows using Equation (7-4) which is satisfied by the maximum

likelihood estimate, using the asymptotic equivalence of the negative Fisher information

and the Hessian in (7-7), and the expression (7-3) for the negentropy. Consider the case

of fitting two models k and 0J, and consider the expected difference of the maximized log

likelihoods

E(1(0) - 1(ak)= E(1(Ok) - 1(c)] - E(0) - 1(ok)]

= + dim(gk) - dim(0j ) + R(0,) - R(O,Ok)

Thus for relative comparisons among hypotheses based on a given sample, an unbiased

estimate of twice the negentropy E[e(O) - 1(0k)] is given by the Akaike information

criterion. Note that the proof of this is much more general than that originally given by

Akaike (1973) since it applies to the general case of comparisons of nonnested structures.

Also, the true parameter 0 need not be contained in the structures being compared so long

as the Fisher information matrix is a constant in a neighborhood including the true

parameter and its projection onto the subspaces of these structures.

7.5 Adaptation to Slow Changes

The key issue in adaptation to slow changes is the choice of the rate of adaptation.

Previous approaches to slow adaptation have been largely heuristic and not based upon

sound statistical principles. In this section the principles and concepts of predictive

inference are used to derive a procedure for choosing an adaptation rate which minimizes

the prediction error for an independent sample from the process.
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Consider the problem of choosing the optimal rate at which to identify the system.

we consider the problem as stated in Section 7.2 where it is assumed that the system is

slowly changing, qnd that based upon the observed data we wish to determine a best rate

to identify the system. Consider dividing the data over an interval of L =21 samples,

where I is an integer, into H = 2h subintervals each with length 2 h. Suppose for a given h

that on each of the intervals I for 1,2 ,3 ,...2h the best state space model Mhj is determined

using the minimum AIC estimate (MAICE) criterion,

To provide some motivation, we consider the negentropy as expressed in (7-3). For

the case of a constant parameter model, consider the effect of the number of the parameters

and the bias in choosing too low an order model. The negative entropy depends upon the

particular parameter estimation procedure, but for large samples it is bounded from below

by

ER(0,0k ) = + ER(0,jk)> K(k) ER (o,qk)
j=1

where j is a interval index. This lower bound is accurate for k near 0. The first term Kk

is the sampling variability of the optimal estimator. The second term is the bias due to

constraining the parameter estimates k to lie in the subspace Gk which increases with

increasing sample size since the parameters of the time varying process are not constant.

On the interval L we consider the model selection procedures Mh for h = 1,...H as

above, i.e., procedure Mh fits the composite model consisting of the time invariant models

Mh, j for j = 1,2 ,3 ,...2h fitted on each of the 2h subintervals. For a given h the model

selection procedure Mh is identical to the maximum likelihood problem of estimating the

parameters 0h,j of the joint models Mh, j for j =1,...,2h . Then for a given h the MAICE for
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the model selection procedure Mh is

MAICE(Mh) = -2 log p (IL,0h) + 2 Kh(kh)

2 h  2 h

=E [-2 log p ( 1 ' 0h, )1 + = MAICE
j=1 j, j j1 + 2 KhJ j=X (' 1hj)

where the interval Ihj denotes the appropriate data.

We wish to choose the data length D =L2  corresponding to the h minimizing

MAICE(Mh). This procedure gives a very sensitive comparison of different rates 2- h for

identifying the model, or equivalently the data length D =21-h for identifying a model.

The tradeoff between sampling variability form using too small a data length and bias from

using too long a data length is seen by the effect of data length on the two terms in the

MAICE criterion. Too little data introduces variability in the log likelihood function and a

penalty for more parameters, while too much data reduces these but introduces bias in the

model due to modeling a changing process as one with constant parameters. The optimum

is achieved when the respective rates of decrease and increase are balanced.

7.6 Detecting Model Changes Across Different Data Sets

In Section 7.4 the AIC was shown to give an unbiased estimate for choosing a model

structure for a give set of data. In this section, we consider the problem of determining if

there is a change in the process between tow different data sets. The detection problem

that we consider is where the process is modeled as a slowly changing process using some

efficient procedure such as given in Section 7.5. Suppose that from such a procedure a

model is given for an interval of data Q1 and that over a later interval of data set Q2
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second model is fitted. The data lengths of the two sets are generally different with the

second set usually much shorter. In the context of the scheme in Section 5 for fitting

optimal fixed parameter models over many intervals of various lengths, the two intervals

we wish to determine if there has been a significant departure in the process characteristics

between the two data sets.

Since the model, denoted M1 , fitted on data set Q1involves a near optimal selection

of the data length, the model M1 provides a best prior model when Q1 is chosen as the

most recent optimal length interval preceding Q2. To detect any abrupt changes in the

system, we wish to compare on the joint data set (Q1,Q2) the fit of the composite model

(M1 ,M2 ) with the composite model (M1 ,M1 ) taking into account the fact that the models

M1 and M2 are fitted over the respective intervals Q, and Q2. To make this comparison,

we seek an unbiased estimate of the difference between the negentropies of these two

composite models.

The Markov stucture can be used to make the two samples essentially independent

by conditioning the observations on the past. The joint distribution of the two data

intervals is

p(Q 1 ,Q2 ) = p(QI)P(Q 21 Q1 )

Thus we suppose that the models on each of the two sets are fitted to the

conditional data given the past. Since the model on the first data set Q, is the same for

both composite hypotheses, the first term p(Ql) is the same for both composite models.

Thus we need only compare the negentropy difference between the conditional model

MI(Q Q1) and the conditional model M2 (Q21 Q1) both fitted on the interval Q2.
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Denoting the parameter estimates of the models Q, and Q.2 by 0 and 02

respectively, we compare the log likelihoods on the random variables Q) given Q1. The

expected difference of the log likelihoods of the two models is

E[( 1 ) - 1(92)] = E[i(0) - ("2 - E[1() - 1(l

- -dim(02) + R(0,02 ) - R(0,0')

where the term dim(0 1) is not present since the estimate 01 is a function only of the sample

Q, which is independent of the sample Q21 Q1. Thus an unbiased estimate of the

difference of negentropies R(0,02 ) of the two models is

(0 1)I(2) + dim( 02 )

This gives a test for the occurrence of an abrupt change between the two data

intervals. Depending upon the nature of the change and the process characteristics, the bet

detection interval will vary. Some changes give most of the information about the change

over a short interval while others have a cumulative effect and require a long time interval

to detect.

7.7 Detection of Slow Model Changes

We now consider the detection of slow, essentially continuous, model changes.

What we wish to achieve in this case is an appropriate data length over which to fit

models. If the data length is too short, then there will be a tendency to over-fit the model

to the noisy data, leading to larger prediction errors. If the data length is too long, then

the effects of parameter variations will begin to dominate the prediction errors.
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In order to generate an appropriate measure by which to trade off these two

characteristics, we again use the AIC criterion, but in a different way. Assume we have

data over a time interval I {1,2,...,n} and suppose we divide this interval into

subintervals of length W:

I, = {,2,..., W}

12 = {W+1, W+2, ... ,2W},

etc.

Then an appropriate measure for data length determination is the average per sample

entropy. In terms of the AIC criterion we define

AI C W =  E_ AiCp(ki
N i W

where AIC p(ki*) is the minimum prediction AIC for the ith interval Ii, k.* is the optimal

model order for the it h interval, and Nw is the number of intervals of W over the whole

data interval I. The prediction AIC uses the forward prediction error variance (cf eq. 5.9))

rather than the fit error variance, since we are interested in the error over the next

interval, not the one over which the model was fitted. This has the effect of increasing the

penalty on the number of parameters in the AIC criterion.

The form of AIC is
p

AIC p(k*) = AIC(k*) + M(ki*)
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Experimental Results

In order to test this criterion as the basis for data length selection, we considered a

second-order AR model

y(t) = al(t) y(t-1) + a2 (t) y(t-2) + n(t)

where n(t) was zero-mean white gaussian noise with unit variance. The time varying

coefficients were selected so that the two system poles were on the unit circle in the

z-plane. This yields: a1 (t) = 2 cos 0(t), a2 = -1 where the roots are: cos 0(t) - i sin 0(t)

and cos 0(t) - i sin 0(t). The time-variation of 0(t) was selected as 0(t) = 0(0) + 2 7r f t,

where f is a selected frequency. Two values of f (.0001, .001) were used in the experiments.

Total data length was 1000 time points. The results for Case 1 (f = 0.001) are shown in

Table 7.1, using 0(0) = 0.2. The result is that the optimal indicated data length is 10-12

samples and corresponds to the case in which the average coefficient change over the fit

window is in the range of 0.80 - 0.96. Over the entire data length of 1000 samples, the

value of aI starts at 1.64, deceases to 1.90 at t - 400 and then increases to 1.90 at t =

1000. Thus, the average coefficient change over the optimum data length is generally more

than 40% of the coefficient value.

Table 2 shows the results for Case 2 (f = 0.0001) in which the optimal data length is

found to be 30 samples. This is, of course, increased over that of Case 1 since the

coefficients vary much less rapidly - on the order of 0.019, on the average. Note that the

rms prediction error a e evaluated over the fit set generally decreases monotonically with

data length and cannot be used as a selection criterion.
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CHARTER 8

E-M Algorithm for Adaptive Time Series Analysis

In this chapter, we explain the basic properties of the E-M Algoritnm based on

Dempster, Laird and Rubin (1977) and describe its application to Adaptive Time Series

Analysis The E-M Algorithm involving iteration of E (Estimation) and M

(Maximization) steps is a general procedure for maximum likelihood estimation (MLE) of

models from incomplete data. We show that CVA-Regression algorithm of previous

chapters implements E and M steps in a special way. Based on the recognition of this fact,

we show how the CVA-Regression approach can be generalized to obtain MLE of the state

space model. In addition, we show how the algorithm can be implemented recursively to

allow for real-time identification and extension to time-varying systems. We also consider

extensions to missing data, nongauss'iamstatistics and ARMA models.

8.1 E-M algorithm - Basic Properties:

The basic motivation for the E-M algorithm comes from the fact that in numerous

estimation problems, only partial observations of all the states or underlying causal factors

are available. If the observations of the complete state or factors were available, the

estimation problem would become simple. The E-M algorithm estimates the ,;omplete

state given the observed data and then estimates parameters after construction of the

complete data set. This process is repeated in such a way that the likelihood function

increases with each iteration of the E-M algorithm, till convergence to a local or global

maximum of the likelihood function is achieved.

The simplest example of the application of the E-M algorithm is for the case of

missing data. The E--step involves estimating the missing data points and the M step is

based on the procedure used when there is no missing data. Regression models with
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Mri-l,n data points can te estimated in ths fashion.

The Markovian modeling approach to Time Series Analysis lends itself to the E-M

approach. In state space models for Markov processes, all the states are generally not

observed. It is well known that if all the states are observed, the system identification

problem is solved easily by Regression or Oziinary Least Squares (CLS). For partial state

observations, estimation of the full state using a Kalman Filter requires knowledge of the

parameters. A natural approach based on the E-M algorithm is to asime the parameters,

estimate states and update the parameters using the estimated states. Even though the

concept is simple and has been proposed earlier in the literature of system identification,

both the E and M steps must be carried out properly so that the likelihood function

increases at each iteration and the parameters converge to the ML estimates. Therefore

the conditions under which the E-M algorithm converges must be examined carefully.

We state here the basic results from Dempster, Laird & Rubin (1977) on the

application and convergence of the E-M algorithm. We, then, apply these results to the

problem of state space model identification using CVA and E-M algorithms.

Assume two sample spaces S and Y and a many-to-one mapping from S to Y. The

observed data y is a realization from Y. The corresponding state s in S is not observed

directly, but only indirectly through y. The sampling density defined for all s in S ib

f(s I ), where 4 denotes a parameter vector. The corresponding sampling density for y is Y

is obtained as

g(y I) = fS(y)f(s) I )ds (8.1)

The EM algorithm attempts to find 0 which maximizes g(yl) given y by making

an essential use of the density f(s I).

I 8-2



One of !he key relationship used in the derivation of the E- I al.rith:r, is

f ( SI ) (S.2)

P ( s I , )

where p(sjIy,) denotes conditional distribution of s given y and . Eq. (8.2) follows

from the fact that

g(y) p(sIy, ) = p(s,yj¢)

and p(s,yI ) = f(sI¢)

since y is a subset of s. Taking logs on both sides of Eq. (8.2), we obtain the

log-likelihood function

L(4) = log g(y14)

= log f(s I ) -log p(s I y) (8.3)

For the case of exponential family of probability distributions, which includes the

gaussion case, Eq. (8.3) simplifies greatly and leads to very useful results. We first note

that an exponential distribution can be written in the form,

f(s I ) = b(s) exp ( t(s) T)/a( ) (8.4)

where t(s) is a 1 x r row vector of sufficient statistics for the complete data. The 1

x r row vector parameterization is unique up to an arbitrary non-singular r x r linear
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transformation. as is the corresoonding choice of t(s). Based on a property of ,he

exponential distributions, p(si yt) is also exponential and has the form

p(sfy,b) = b(s) exp (t(s) T)/a((y)) (S.5)

where a(N(y))= f b(s) exp (t(s)T)ds (8.6)
S (y)

The key property here is that both f(sj4) and p(sIyf) are from the same

exponential family with the same natural parameters and the same sufficient statistics

t(s), but are defined over different sample spaces S and S(y).

Eq. (8.3) can now be written as

L( ) = -log a( ) + log a(Q(y)) (8.7)

The first partial derivative of L(4) or the score function is obtained from Eq. (8.6) & (8.7)

as

aL ( 4 ) -E (t(s)14,) + E (t(s)y,) (8.8)

where E(.) denotes expectation over the appropriate sample spaces viz. S and S(y)

respectively in Eq. (8.8).

Since a L = 0 is a necessary condition at the maximum of the likelihood function,

the MLE must satisfy the condition.
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I
E (t(s)) = E (t(s)lv.) .9,

The E-M algorithm achieves (S.9) iteratively as follows:

E-Step: Estimate t(s) during kth iteration as,

t (k)(s) = E (t(s)jy,c(k)) (8.10)

M-Step: Obtain updated parameter vector, cp(k± l ) by solving the eqn.

f ~ E (t (s)l) = i(k) (s)(.)

The E-M algorithm of Eq. (8.10) and (8.11) defines a parameter mapping (k)

¢(k+1) as

b(k+ l) = M ( (k)) (8.12)

This mapping has several interesting properties which are given in Dempster, Laird

Rubin (1977) and Wu (1983). In particular, it leads to a monotonic increase in the

likelihood function L(Q). The conditions under which the parameter sequences (k)

converges to the MLE and the rates of convergence are given in the above papers. These

conditions are verifiable for exponential family. The Jacobian of the mapping (8.12) is

given by the expression.

a= V (tly,4) V (tI )-1 (8.13)
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where V(.) denotes covariance operator. The rate of convergence is determined by Lhe

eighavalues of the above Jacobian which in turn depend on the information loss due to

incompleteness of the data.

8.2 MLE of State Space Model Parameters Using E-M Algorithm:

Consider a state space model in the usual notation:

x(k + 1) = F x(k) + G w (k) (8.14)

y(k) = H x (k)+ u(k) (8.15)

k = 1,2 ...... N

Let o denote all unknown parameters in the above model. It is required to estimate

Nd given output data, = {y(1),...y(N)}.I'
It is obvious from Eq. (8.14) and (8.15) that if the full state {x(k)}k=lN was

known, matrices F,G and H could be estimated using Regression or OLS. We, therefore,

define the complete data set as:

SN....Y xN (8.16)

The complete - data density function is

f(SNJ¢) f(YN, xNI1o)
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f(YN iX e)f(X Y)
S-I . I t , -: I

- f(Y(j) I X(j), )(X(j) 1 X(j-1)4) (s.17)
j= 1

Using Eq. (8.14) and (8.15), we can write

f(y(j) j x(j), ) - N(Hx(j),R) (8.18)

f(x(j)Ix(j-l),4) - N(Fx(j-I), GQG ) (8.19)

We now try to express f(S IN)in the form (8.4) to identify t(S N) and q.

1N 2

f((2ir) IRI .' IGQGI exp - 1/2 j1 y(j)-Hx(j)I I

+ I Ix(j)- Fx(j-1)l I(GQGT)-I (8.20)

The term outside the exponent represents b/a( ). The term in the exponent within

brackets represents t(SN) T as follows:tI
€ t( N)T - Tr{R- (y(j) - Hx(j)) (y(j) - Hx(j))T}

j=

+T T(GG) I N T

Tr{(x(j) - Fx(j-1)(x(j) -Fx(j-1))T (8.21)
j=1

The next step is to redefine the unknown parameters in such a way that they appear
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lineariv in the above equation. The terms multiplying a given parame!er. then. define the

associated sufficient statistic for the estimation of that parameter. As an example, consider

the case in which only the noise covariances R and GQGT are unknown.

This is a very common case in Adaptive Kalman Filtering and correlation type

methods for the estimation of these matrices were considered in Mehra (1970). E-M

algorithm leads to a new method for the MLE of noise covariances, which should have

great practical significance. Based on Eq. (8.21), it is better to estimate R- and

(GQGT) - 1 . The sufficient statistics are:

N
t~ {E (yffj)Hx(j))(y(j) -H x(j)T} ior R

This is intuitively obvious since the above quantities are sample covariances of v

and gw.

Before proceeding to the more general case of additional unknowns {F,H}, we derive

the E-M algorithm for the above case.

E-Step:

t(k)(sN) = E[t (SN) IYN, 4 (k)]

S (y (j) - Hx(jI N)) (y(j) - Hx(jI N))T

j=1

+ H P (jIN) HT} (8.22)
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IN
where x(j; N) denotes the smoothed estimate of x(j) based on Y N and k The

associated covariance is denoted by P(jj N).

The equations for the computation of f(~I N) and P(j N) are well known in the

control literature. See (Bryson and Ho (1975)). The computations can be carried out

recursively using a Kalman Filter and a backward sweep. Alternatively, x(jjN) can be

written as a weighted average of a forward Kalman filter state estimate x(j I Yj) and a

Nbackward Kalman filter estimate X0IT+ (see Mehra (1968)).

Similarly t is estimated as

t(k)(sN) E N (x(jI N) - Fx(j-1 N-i)) (x(j I N) - Fx(j-1 N-1))T+ P(j N) +
2 1 j=

FP (j-1 IN) FT - CN(jij-I) FT _ F CT(jj-1) (8.23)

where CN(jj-1) denotes the correlation between the smoothing errors at j and j-1.

An expression for CN(j,j-1) can be found from the smoothing equations.

The E-step, therefore, consists of running two Kalman filters or a filter/smoother

and solving Eq. (8.22) and (8.23). The calculations can be made recursive in data length

N.

M-Step: For this step, we need to evaluate E(t 14)) and E(t 2j4), expressing them as

functions of 4, equating them to the values for t and t obtained in the E-step and
1 2

solving for 4. This is quite straight-forward based on the state

N T
E (tI4)) =E E[v(j) v (j)] = NR (8.23)S j=1

I-



I
E(t = E Gw(j)v T;j)G = N GQGT (S.2

Therefore,

N
Rfk±.1) 1 E {(y(j) - Hx(j IN)) (y(j) - Hx(jI N)

Rj=I

+ jN T 1(8.25)

(GQG T)(k++) = I F I((jIN)- (j-I N))

IN

(x(jIN) -Fx(j-1IN))T + P(jjN) + F P (j-1N) FT

CN (j,j-1) FT - F CT (j, j-1) (8.26)

We now consider the case of unknown {F,R}. In this case, the estimation of R

remains unchanged, but the sufficient statistics for the estimation of F are

N T. N .T
t 3 = x(j) x (j-1) and t4 = S x(j)x (j).

j=I j=l

E (t3 0) = NF ExxI
I40(t N E,

Iwhere Exx is the covariance of x(j).

I
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Using the E-step.

F(k 1) ((k))-l t k) (8.27)

where t - {jN (- uN + CN~h)-(k)

t X {jI N)xT(j IN) + P (j IN)}
j=l

The above results are easily generalized to the case of unknown {F,H,R, GQGT}.

However, identifiability issues must be considered. In particular, F and H must be put in a

canonical form. If output canonical form is used, H consist of zeros and ones and F has no

more than np parameters where n is the state dimension and p is the output y dimension.

8.2.1 Relationship of E-M algorithm to direct MLE:

Direct MLE of parameters is given in Appendix B involves maximization of

L() = log p (YNid)

The computational aspects are discussed in Gupta and Mehra (1974). It is interesting to

note the similarities and differences between the two approaches. In particular, if the

smoothing form of L( ) given in Schweppe (1973) is used, the similarities are quite striking.

The main difference is that the Kalman Filter/Smoother sensitivity equations involving

and aP/0 do not have to solved, resulting in significant computational savings. On the

other hand, the rate of convergence of the Gauss-Newton iteration is probably faster,
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though the convergence may be more problematic, especially where some parameters are

unidentiable resulting in a singular Fisher Information Matrix. A comparison of the two

methods on practical problems would be of great interest.

8.3 E-M Algorithm for ARMA models:

ARMA (p,q) model has the form

p q
y(t) = E a. y(t-i) + u(t) + E b. u(t-i) (8.28)

i=1 i=1
t = 1,2, ...... N

where {u(t)} represents a random shock series which is zero mean, Gaussian and

white with variance o-1. Parameter vector is a (p+q+l) vector of unknowns (a, ..ap,
qubi ,... b a2,

We define the complete data set as consisting of the sequence ={u(t), t=1, N}

since given uN, the observed data set YN can be constructed exactly from Eq. (8.28). The

sequence U N is the innovation sequence and is related to YN through a causal and causally
1 1

invertible transfer function. It is assumed that N is large so that the effect of initial

conditons (i.e. valu-es of y(t) and u(t) for t<o) is negligible.

N N
P(U 7 p(U(t)l) (8.29)

where p(u(t)j¢) N(oOu).

u(t) can be obtained from Eq. (8.28) as
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I p _.q

u(t) = ,(t) - - E b u(t-i) S.40)i" li=lil

Using this equation,

P(U ) exp -__ _ P (t)- E ai(t-i)

(2 =,-, 2 o" 2 t=1 i=.

q
- b biu((t-i)]2

i=1

The sufficient statistics t(U) for estimation ofparameters { 2...a, b .. qb o2 }
( 1u

N N N N N
E y(t-i) u(t-j) g y 2(t), E y(t-i) y(t-j), Z y(t-i) u(t-j) and Z u2(t). In order

t=1 ' t=1 t=1 t=1 t=1
NNto obtain conditional mean of t(U ) given YN, u(t) is expressed in terms of y(t) sequence

by inverting Eq. (8.28). The inversion is done most easily by using lag operator, z.

u(t) = A ( z ) y(t) C(Z) y(t) (8.31)

p (L.
where A(z) = 1- E oiz1

i=1

q
B(z) = I- Z bizi=1

Cz i

C(z) = 1- E
i=1' 1

C(z) represents the equivalent AR model of a high order, e.

The above relationships suggest the following E-M algorithm:
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E-Step: Given Y and estimate sequence {u t } from Eq.,i,.31, wtc:ih

corresponds to a long afitoregression. The order of the AR model can be determined using

AIC.

M-Step: Update parameters {a ... a b b o.u} using regression of Y(t) onK**P) 1 q) u

lagged values of y(t) and u(t). The parameter estimation involves use of the same

sufficient statistics as identified above.

An alternative procedure to estimate parameters which is similar to the CVA

method is to first obtain predictors y(t+lt), y(t+21t),.o y(t+nIt) using orthogonal

projections or conditional expectations, where n = max (p, ). Then from Eq. (8.38),

Pi

y(t+nlt) = iS&@ y(t+n-il t) (8.32)

Equation (8.32) is used to estimate { i .

Then {bi} are obtained from

B(z) = A(z)/C(z) (8.33)

C

02 is estimated from the variance of the residuals from the long autiregression thatU

estimates coefficients of C(z).

8.4 Relationship between CVA - Regression and E-M Algorithm:

The procedure used in section 8.3 for ARMA models can be generalized to state
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scace models which are equivalent to multiple ARMA models. The role of sequence u~tl is

played by the innovation sequence v~t) in the state space modeling framework. We use the

Kalman Filter representation of the state model,

x(k+lk) = F[x(klk-1) + K v(k)] (8.34)

y(k) = Hx(jJ k-1) + v k) (8.35)

It is well-known that the innovation sequence {v(k)} and the output sequence

{y(k)} are related through a causal and causally invertible transfer function. Therefore,

given {v(k)}, {y(k)} can be obtained from Eq. (8.34) and (8.35). To obtain v(k) from y(k),

we rewrite Eqs. (8.34) and (8.35) as

x(k+IIk) Fx(klk-1) + FK(y(k)-Hx(klk-1))

= F(I-KH) x(k Ik-1) + FKy( k) (8.36)

v(k) = y(k) - Hx(kj k-1) (8.37)

Defining the complete data set as S {v(k) ,N' the E-M algorithm can be

implemented in the same way as for the ARMA case. We are assuming here tht N is large

and the system is stable so that the effect of initial state x(o) is negligible.

E-Step: Given YN and parameter values in {F,H,K}, use Eq. (8.36) and (8.37) to
N

estimate the sequence vN. At the same time, the sequence {x(k I k-1)} is estimated and

the sufficient statistics are computed.
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M-Step: Update parameters in {F.H.K} by equating sufficient statistics from the

E-step to their expected values, which are only a function of . Alternatively, perform

regressions using Eq. (8.34) and (8.35) and treating ;'(k) as white noise.

Notice that the regression step of the CVA algorithm of the previous chapters is

similar to the above M-step. The major difference lies in the E-step, where the CVA

algorithm estimates x(k I k-1) nonparametically assuming no a priori model structure. In

practice, this is a necessary first step since it provides model structure and initial

parameter estimates.

The alternative procedure described in section (8.3) for implementing M-step has

been generalized by Akaike (1976) and Mehra (1982) to the current situation. The

covariance of v(k) is obtained by fitting a long auto-regressive model. The F-parameters

are obtained from the CVA calculation after model order has been determined. K matrix

is obtained by equating the transfer functions from the AR model and the state space eqn.

model (8.34) and 8.35).

The above relationship between CVA and E-M algorithm shows that CVA only

implements one step of the E-M algorithm. By repeating these steps, as outlined above,

one can increase the likelihood function and achieve convergence to MLE. Furthermore,

the recognition of the above relationships shows us how to make CVA recursive.

It should be remarked that the results of the sections 8.2, 8.3 and 8.4 are extended

easily to the case of exogenous inputs or forcing functions which are known.

8.5 Recursive ML Identification:
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8.5.1 AR.MA Case:

In this section, we show how the E and M steps can be implemented recursively for

adaptive time series analysis. For simplicity, consider first the ARMA model of Eq. (8.2S).

The recursive estimation of AR models is well-known (Ljung and Soderstrom (1983)). The

computations of {u(t)} from (y(t)} can be made recursive both in model order and data

length for the univariate as well as the multivariate cases. In order to perform recursively

'I-step involving regression, we create a new state vector (t) consisting of {a .. ap,

b ... b q. For constant coefficient ARMA models,

t+)= (t) (8.38)

y(t) = H(t) (t) + u(t) (8.39)

where H(t) = [y(t-1), y(t- ), u(t-1), u(t-q)]

On-line estimation of (t) can be performed recursively using a Kalman Filter. The

variance parameter o-2 can also be updated recursively. We can generalize to the time
U

varying parameter case in which

(t+l) = A c (t) + w(t) (8.40)

If A and Cov(w) are known, a Kalman Filter still provides the best estimates of

1 (t), along with the covariance of the estimates. For A and Cov(w) unknown;)

E-M algorithm needs generalization. This can be done by defining A and Cov(w) as the

hyper-parameters and redefining the complete data vector to consist of {u( ), (t)}

sequence.
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The recursive MLE computations involve the following steps. when a new data

point y(Nl) is received.

1. Update AR model parameters (coefficients of C(z)) by using y(N+1).

2. Recompute {u(t)}, t=l, N+I using the new AR model.

3. Solve the KF equations for the parameter state vector 4(t), using the new values

of {u(t)} and {y(t)}, t=l, N+1.

4. Solve for AR model parameters from the estimated parameters and repeat the

above steps.

In the above procedure, steps 2 and 3 are repeated over the whole data set. In cases

where the parameter changes are small, it may be sufficient to simply compute u(N+1) and

run the KF only for one step, without any further iterations. This procedure is

recommended in any case to check if the changes in the parameters are large enough to

warrant recomputation of the whole {u(t)} sequence and iteration.

For the time varying case, it is also possible to implement a fixed data window KF

(see Mahmood (1989)). The optimal window length can be determined using a generalized

AIC criterion.

8.5.2 State Space Models:

The procedure for recursive estimation in state space models is similar to the one used

above for ARMA models. For the case in which the model structure is unknown, CVA is
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u;Sed first to determine model order and a system state vector. Then matrices F.II.K and

E are determined using methods proposed by Akaike (1974) and Mehra (1982). In this

approach F ar.H are chosen in a canonical form with a parsimonious representation. This

initial step is nonrecursive and requires a batch of data {y(1),.,y( ))}. After this step, the

algorithm can be made recursive. It is desirable to supplement CVA procedure with an

E-M iteration on the initial batch of data to get MLE. Then the purpose of the recursive

algorithm will be to update parameters with a new data point (N+I) without repeating all

the previous computations.

The recursion consists of the following steps:

1. Solve Eq. (8.36) and (8.37) using parameters from CVA and store

{x(k I k-l),v(k)}k=l,N

2. Rewrite Eq. (8.34) and (8.35) as regression equations with as dependent

vria-ble {x(k+ 1 k), y(k)},, and independent variables x(k Ik-1). Define a state equation for

as (8.48) and use a Kalman Filter to estimate cp using the regression equations as the

measurement equations for d. We omit the details since the procedure is similar to the one

used for the ARMA modelin writing Eq. (8.39) and"'e,Kalman Filter equations are

well-known.

3. Repeat the above steps till convergence is achieved.

Depending on the change in the parameter estimates for applying the steps 1 and 2

to N+1), a decision can be made to implement steps 1 and 2 on the entire data set or a

suitable window. Similarly step 3 should be used if the changes in parameters is large.
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The major benefit of using the above procedure aw repeated use of CVA is that the

time consuming CVA and complete regression calculations do not have to be repeated at

each step.

8.6 Other Extensions:

8.6.1 Missing Data:

The E-M algorithm is ideally suited for handling missing data points. The complete data

set is simply expanded by the missing y(.) data pints. If an initial model is available, and

the E-step is carried out using a KF, the missing data points presents no problem as such

since the KF can handle data points taken at arbitrary times. In fact, the KF produces

state estimates at every step of the state transition equation. The missing outputs are then

estimated from the corresponding state estimates and used in computing the sufficient

statistics. The M-step is based on the use of the estimated complete-data sufficient

statistics in a regression or other type of parameter estimation process. As the E-M steps

are repeated, the missing data points are replaced by their best estimates based on the

observed data and the model parameters. The same procedure can also be used to handle

outliers or bad data points.

8.6.2 Nongaussin Statistics:

E-M algorithm, like MLE, is applicable to the nongaussin case, as long as the form of the

distribution function or the likelihood function are known except for the unknown

parameters. However, for the nonexponential family of distributions, the M--step involves

maximization of a function. The details of the M-step and its properties are well covered

in Dempster etal. (1977).
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CHAPTER 9

SUMMARY, CONCLUSION AND FUTURE RECOMMENDATIONS

9.1 INTRODUCTION:

The main goal of this project was to investigate

theoretical issues about Adaptive Time Series Analysis

including a system identification technique known as CVA-

AIC. A predictive inference and entropy framework was

selected for the analysis. The CVA-AIC technique was also

be compared with other techniques of system identification.

This technique, developed over the last decade, has

been found successful in many practical applications. Such

success can be attributed to the fact that CVA-AIC has

better statistical properties than many other existing

techniques and allows automatic optimal model order

selection using concepts of entropy and predictive

inference. The latter capability relieves a user from the

burden of applying subjective decisions regarding model

order selection. The CVA-AIC technique is based upon the

stochastic realization theory, statistical theory of

canonical correlation analysis and the order selection

procedure based upon Akaike's Information Criterion (AIC).

Although these underlying theories are based upon rigorous
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mathematical justification, various specific steps of the

CVA-AIC technique have not been founded upon strict

mathematical rigor. Instead, the technique has been used on

an adhoc basis in practical applications. For this reason,

the effort of this project was devoted to the strengthening

of theoretical aspects of the CVA-AIC technique and

exploring its relationship to other techniques, instead of

producing empirical results using extensive simulation runs.

Before presenting the conclusions of this effort, we provide

a summary of the report.

9.2 SUMMARY:

The report start with an overview of the adaptive time

series problems. The necessary mathematical preliminaries

have been presented in Chapter 2. It has been shown at the

beginning of this chapter (Section 2.3), that if the

dimension of the parameter vector is known, then the AIC

criterion is asymptotically equivalent to the maximum

likelihood estimation problem. In the second half of this

chapter, the estimation technique for model entropy has been

presented. These results are not new, but have been

presented here for the sake of completeness of the report.

Moreover, the analysis has been carried out in a discrete

valued random variable framework which is new and more

transparent. The CVA theory, in its most general form, has

been presented in Chapter 3. Here the case of modelling
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stationary processes with possibly singular covariance

matrices has been considered. It has been shown that this

type of problem can be solved using a generalized singular

value decomposition process leading to a generalized

canonical variate theory. The analysis in this chapter

includes the standard CVA theory when the respective

covariance matrices are of full rank. Several schemes for

generating state space models have been presented in Chapter

4. In Section 4.1, the technique for computing the Kalman

Filter form of the state space model has been developed

where it has also been shown how to transform this form to

the standard state space model. The technique for computing

the latter model has been presented in Section 4.2 and

finally, a technique that is recursive in model order has

been developed for the standard state model in Section 4.3.

The motivation behind this effort is that, on many

occasions, models of increasing order are computed until a

desired characteristic (such as a desired mode) is detected

in the model. The problem of confidence interval estimation

around the power spectrum and systems transfer function is

dealt with in Chapter 5. The motivation for undertaking

this analysis is that both the power spectra as well as

confidence bands are needed in many design problems. For

example, in control system design, a control law is designed

for a nominal plant to obtain a prespecified performance

level and stability margin that will also domain valid for

the entire set of plants in the neighborhood of the nominal
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p
plant in the frequency remain. Therefore, the uncertainty

region around the identified model must lie within the

region allowed by the control law.* It is interesting to

note that the size of the confidence interval around the

identified model can be adjusted from the data length.

The abrupt change in a model is encountered frequently

in a real world situation. For example, sensor failure or a

component failure in a system may induce an abrupt change in

the system model. This change must be detected quickly and

corrective action must be taken to prevent any catastrophic

failure. It has been demonstrated in Chapter 6 that CVA-AIC

technique can be used for such fault detection by comparing

the value of AIC on each successive data interval. The

technique developed in this chapter has been demonstrated on

a simulation example. As shown in Chapter 7, an entirely

different approach is taken for a slowly varying system. In

this case, the data is divided into various subintervals and

a separate model that is optimal in the sense of AIC

criterion is identified for each segment. In the last

section of this chapter, the technique has been illustrated

through a simulation example.

Chapter 8 is devoted to the application of a technique

known as the E-M algorithm for extension of the previous

results. Although the technique is relatively new to the

engineering community, the researchers in the field of
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statistics have used this technique from the mid seventies.

This is a very powerful and general framework in which many

classes of estimation problems canbe formulated and solved.

In addition theoretical issues such as convergence rates can

be analyzed. It has been shown in this chapter how the CVA-

AIC technique fits naturally into the E-M framework and how

the maximum likelihood estimates (MLE) of the parameters can

be obtained starting from the CVA-AIC estimatse. In

addition, extension to time varying parameters and recursive

parameter estimation schems are described. The E-M

algorithm presents a new way of analyzing and extending the

CVA technique. At the same time, it unifies different

techniques of adaptive time series analysis and shows

clearly the relationship between them.

9.3 CONCLUSIONS:

The investigations under the scope of this project have

enhanced our understanding of how to analyze a time varying

system in a predictive inference and entropy framework. Our

attention was focused mainly on the CVA-AIC technique and

its relationship to other techniques for system

identification. The major conclusions of this project are:
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(i) The problem posed by Akaike (for computing AMC)

is asymptotically equivalent to maximum likelihood

estimation problem when the parameter dimension is known.

(ii) The CVA-AIC technique can be extended using the

E-M Algorithm in such a way that the model will converge

monotonically towards the ML estimates.

(iii) The problem of entropy maximization can be posed

either for the continuous time or discrete time stochastic

processes.

(iv) The CVA theory has been extended to include more

general type of time series. The extended theory is known

as "Generalized CVA Theory" and can handle time series with

singular covariance matrices.

(v) In the CVA-AIC framework, the model can be

identified either in the standard state space form or in the

Kalman Filter form, depending upon the type of application

at hand.

(vi) The standard state-space model of various orders

can be computed recursively starting from order one.

(vii) Once a state-space model is identified, the

system transfer function, noise power spectrum and
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associated bands of various confidence levels can be

computed.

(viii) An abrupt change in a model can be detected in a

CVA-AIC framework by partitioning the data into various

segments and comparing the value of the optimal AIC from

various segments. This technique can be used as a

generalized fault-detection scheme.

(ix) E-M algorithmic approach provides a very general

framework where most of the estimation problem can be

formulated. If the CVA-AIC technique is embedded properly

in an E-M framework, it would leads to maximum likelihood

estimates.

9.4 FUTURE DIRECTION:

Considerable theoretical analysis has been done in this

project, yet more is needed to understand the CVA-AIC and

the E-M techniques fully. Also future efforts should be

directed towards practical implementation issues. It is

recommended that the future work in this area should

include, but not necessarily be limited to, the following

items:

(a) It has been reported that the CVA-AIC technique

produces estimates that are close to MLE estimates. In
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'act, it can be shown for independent and identicallv

distributed random variables, that the estimate generated by

the AIC criterion is asymptotically equal to the MLE

estimate. More theoretical investigation is needed to

assess the performance of the generalized CVA-AIC technique

relative to the MLE technique in the general Adaptive Time

Series setting.

(b) Currently, CVA-AIC technique has been implemented

in a batch mode and is computationally dempnding. The

technique is suitable for a slowly time varying system where

the model may need periodic updating. For systems with fast

parameter changes, a recursive form of CVA-AIC technique

needs to be developed so that the it can be used in real

time. We have developed approaches in this direction using

the E-M Algorithmic approach.

(c) It has been theoretically demonstrated here how to

compute the bounds at various confidence levels on the

systems transfer function and the noise power spectral

density. These algorithms need to be implemented and

verified via Monte Carlo simulations.

(d) The state space matrices obtained from the

existing CVA-AIC algorithm are not in any particular

canonical form and may be over-parametrized. The effect of

this over-parametrization on the efficiency of the estimates
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finding the model - it should be investigated whether this

can be replaced by other algorithms with lesser

computational burden.

(i) The combination of CVA and E-M Algorithm based

approaches derived in this report for time varying and

constant systems should be tested on practical examples of

increasing complexity. These techniques are extremely

promising for solving the general Multivariate Adaptive

Times Series Identification problem

9-1.0
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A- PEN IX

_A.XI.TM LIKELIHOOD ESTIMATION

We present here some basic background on naximu i likelihood estimation,

which is used throughout this report.

The likelihood function for a sample xl, x2, . xn parametrized by a

parameter 0 is

n-- = T P(Xi I E)) (A.1)

i=l

Assume the xi are drawn independently from the true distribution

p(xI 0 0). Then L is the joint distribution function of xl, x2, • "' Xn

and

f..f L dx, • • . dx n = 1 (A.2)

Differentiating wrt 0:

.. 6-dx, ) • dxn = 0 ; = row vector

or

ff L dx, • • • dx n - 0

or

E 3l g L  =0 (A.3)

Differentiating again
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NowTI 

2
(-1) L 3T3L

-o _ _ i s -'

so that

T
a2log L ( 3 log L 1 alo + 2L

a02 /0 3/ L a-2

Thus

a2log L E (alog L (alog L)E --2 J0 / -

Now

3log L alog L + ,0 _T 32 logL
30 +e (G02

0  0

where 6 is the maximum likelihood estimate which satisfies

3logL = 0
30 1 =

and 00 is the true parameter value.

Thus
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- -0 - Z

Now define the covariance matrix

E log L .?logL =- E a2log L (A.5)

T
and factor C as C = W W

Write (A.4) as

3log L w-T = ) T ;21og L w-T
30 (1 0- 02

The right hand side is approximated as

(00 _ ;)T C W-T = (00 _ 6)r W

The left hand side is a normalized gaussian variate since

T

E[V 9log L 1- F aog L WTi 1 I
S L 30

Thus, the right hand side is also a normalized gaussian variate and

E{V00  -_ )T WjT [(00 - 6)T WI} = I

which yields
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C is the Fisher informacion matrix, which is Che inverse of the covariance

matrix of the parameter estimation errors.
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IAPPENDIX B: An Innovations Approach to MaKdmum Likelihood Identification of Linear

and NonLinear Dynamic Systems

This appendix presents an approach to ma.xmum likelihood identification of multi-input

multi--output linear and nonlinear dynamic systems with arbitrary inputs. The approach

is based on state vector formulation and uses the innovation properties of optimal filters for

these systems. Application to the identification of the transfer function of a chemical

reactor is considered.

1. Introduction

The maximum likelihood estimation of autoregressive and moving average

parameters in time series analysis has been considered by several investigators [1,2].* The

related problem of linear system identification can often be cast in this framework, though

the parameter transformatio-s invIoved may be nonlinear and nonunique. Special

difficulties are encou- t.r'-x in handling multi-input multi-output linear models and

nonlinear models asing the time-series approach. The author [3,4] has tried to circumvent

these difficrlties by working directly with the physical models and using the innovations

approach of Kailath [5,6]. A schematic diagram of this method is shown in Figure B.1.

MEAS UMMENT NOISE

ME /

Fom am BFITER

*References for Appendix B are given separately at the end.
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-2. Linear Svstems

Consider a diScrete-tirne linear sysiterrt r

(B. 1) x(t + )=Fx(t) +Gu(t) +wt

(B.2) y(t) =H-x(t) + %-t)

wvhere

x(t) =n x 1 state vector; u(t) = p x 1 input vector;

w(t) =q x 1 vector of random forcing functions;

y(t) =r x 1 output vectors; and v(t) =r x 1 vector of output errors

and

Ejw(t)} = o, Ejw(t)w T (MI = Wt"

where 6, is the Kronecker delta function.

E~w(t)v T(t)} = 0

E~v(t)} =0, Ejv(t)v T(-r)} = RSt ,

*References for Appendix B are given separately at the end.
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I

It is assumed that the structure of the model is known. The vector of unknown parameters

from F,G,F,H,Q and R isdenoted by 0. It is assumed tht 0 is identifiable.

The ML estimate of 0 is given by

I (B.3) 0 = Arg {max log p(YN/ 0 )}
0

where

iYN = {y(1) ...... ,y(N)}

and

p(Y N10) = conditional probaability density of YN given 0.

An expression for p(YN/0) is derived as

ip(Y NI/) = p(y(1) ...... ,y(N)/O)

I = p(y(N) YN-1'0) P (Y N-110 )

j = p(y(N)I YN1 ,0)p(y(N - 1)I YN_ 2 ,O)p(YN_21 0)

I N
= E p(y(j)]Y ,0).I j=1 j-1

I B-3



Therefore

N
(B.4)log PYN 10 = Y log P(y(j) IY '0)I (.4 lg ~~N 0 =j=1 j-1

I Consider the case in which x(O), wv(t) and v(t) are normally distributed. Then

etY( 1-, 0) by a well-known property of normal distributions is also normal.

I(B. 5) Ejy(j) IY ,0} = YOUl - 1)
j-1

and

(B. 6) Coy {yi) I Yj- 0,} = B(jjj - 1).

It is known that y~jI j-1) and B (jj ij-1) can be obtained from a Kalman filter [71 of theI following form:

(B. 7) x(t + 1/t )=Fx(t/t) + Gu(t)

(B.8) x(t/t) =x(t/t - 1) + K(t)t~t)

I(B. 9) v~t) =y(t) - Hx(t/t - 1)

(B (10) K(t) =P(t/t - 1)H TBl1(t/t - 1)
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(B.11) B(t) = HP(t/t - 1)HT + R

(B. 12) P(t/t = (I - K(t)H)P(t/t - 1)

(B.13) P(t + l/t) = FP(t/t)FT + rQ T

The likelihood function (B.4) can now abe written as

NT

(B.14) logp (N10)= [ T(j)B- 1 (j/j - l) v(j) + logI B(j/j - 1)1].2 j=l

Here v(t) denotes the innovation sequence which is zero mean, Gaussian and white [5]. ML

estimate 0 is obtained by maaximiing (B.14) with respect to 0 subject to the constraints

(B.7)-(B.13). This is a very difficult optimization problem. An approximation suggested

in Ref. (3) simplifies the problem tremendously. It is assumed that the filter gain K(t) and

covariance B(t/t - 1) have reached constant values K and B and the vector 0 consists of

unknown parameters from F,G,K and B only. Then

(B.15) log p(YN[ O)- N TIN T(B. 5) lg p(Y N 0) -_ E IVT(j)B-lv(j) + log IB[]

2 j=1

Maximizing (B.15) over B, produces

N j=T

where a is the ML estimate of unknowns in F, G and X. It is given by the zoot of the

equation
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T av()
(B.17) vT (j)B- = 0j=l aa

where (ov(j))/aa is calculated from equations (B.7)-(B.9). The root of equation(B.17) is

found by a Newton-Raphson or Gauss-Newton iteration. Once (. is obtained, P,Q and R

are obtained from equations (10)-(13). In this way, the non-linear constraints of

equations (10)-(13) are avoided during optimization. The above method is no more

complicated than the well-known output error method. In fact, it reduces to the output

error method when there is no process noise, i.e., w(t) = 0. In that case, Q = 0, K = 0 and

i,(t) = y(t) - Hx(t) is the output error. A flow chart of the method is shown in Figure B.2.

3. Nonlinear Systems

Consider a nonlinear dynamic system

(B.18) x(t + 1) = f(x(t), ,u(t)) + Fw(t)

(B.19) y(t) = h(x(t)) + v(t)

where f(.) and h(.) are n x 1 and r x 1 vectors of nonlinear functions. Also, w(t) and v(t)

are Gaussian white noise sequences with zero mean and covariances Q and R.

The evaluation of the trule ML estimate would require the calculation of

p(y(j) IYj_1,0) using an optimal nonlinear filter. Since this is computaationally infeasible,

we approximate p(y(j) IYj-l, 0) by a Gaussian density with mean and covariance obtained

from an Extended Kalman Filter [8] of the following form:
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(B.20) x(t + l/t) =f(,X(t/t),O,u(t))

(B.21) x(t/t =x(t/t - 1) + K(t)v(t)

(B.22) v~t) =y(t) - h(x(t/t - 1))

K(t) is calculated from equations (B.1O)-(B.13) by using time-varying matrices F(t) and

H(t).

(B. 23) H(t) = h
O x xx(t/t-l)
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